NumericalCertification -- certifying roots of polynomial systems on Macaulay2

Author

• Kisun Lee <kisunlee@ucsd.edu>

Event

- Macaulay2 conference at CSU
- May 29th 2022

Numerical algebraic geometry

-- Use numerical techniques to approach problems in algebraic geometry

https://ofloveandhate-pybertini.readthedocs.io/en/feature-readthedocs_integration/intro.html#

• Homotopy continuation

Numerical algebraic geometry

-- Use numerical techniques to approach problems in algebraic geometry

https://ofloveandhate-pybertini.readthedocs.io/en/feature-readthedocs_integration/intro.html#

- Homotopy continuation
- Mostly rely on heuristic : <u>Certification</u> is needed

Newton's method -- Use tangent lines to approximate a root

Newton's method -- Use tangent lines to approximate a root

Newton's method -- Use tangent lines to approximate a root

Newton's method -- Use tangent lines to approximate a root

Newton's method shows fast convergence

- Quadratic convergence
- Approximates root precisely within few iterations

Newton's method -- Use tangent lines to approximate a root

Newton's method shows fast convergence

- Quadratic convergence
- Approximates root precisely within few iterations

ex) $f(x) = x^2 - 2$, $x_0 = 1$ $x_1 = 1.5 \ x_2 = 1.4167 \ x_3 = 1.414213562$ $x_4 = 1.4142135623731$ $\sqrt{2} = 1.4142135623731\cdots$

Newton's method -- Use tangent lines to approximate a root

Newton's method may fail

- Depends on where to start from.
- Works only for regular roots.

Certifying solutions

Given a point in \mathbb{C}^n (or \mathbb{R}^n), apply an algorithm

to construct a compact region I to ensure

- 1. <u>the existence</u>
- 2. <u>the uniqueness</u>

of a root of a system in I.

https://mathematica.stackexchange.com/questions/101255/basins-of-attraction-using-newtons-method

Basin of attraction for $z^3 - 1$

Certifying solutions

Given a point in \mathbb{C}^n (or \mathbb{R}^n), apply an algorithm

to construct a compact region I to ensure

- 1. <u>the existence</u>
- 2. <u>the uniqueness</u>
- of a root of a system in I.

Implementations

- alphaCertified (Hauenstein-Sottile 2012)
- <u>certify</u> in <u>HomotopyContinuation.jl</u> (Breiding-Rose-Timme 2020)

Certifying solutions

Given a point in \mathbb{C}^n (or \mathbb{R}^n), apply an algorithm

to construct a compact region I to ensure

- 1. the existence
- 2. <u>the uniqueness</u>
- of a root of a system in I.

Implementations

- alphaCertified (Hauenstein-Sottile 2012)
- <u>certify</u> in HomotopyContinuation.jl (Breiding-Rose-Timme 2020)
- <u>NumericalCertification.m2</u> (Lee 2019)

Two paradigms -- Smale's α -theory

Certify quadratic convergence of a numerical root

- Let $x = (x_1, \dots, x_n) \in \mathbb{C}^n$ a point and $N_F(x)$ $\alpha(F,x)$:
 - $\beta(F, x) := \|x I\|$
 - $\gamma(F, x) := \sup$ *k*>2

If $\alpha(F, x) < \frac{13 - 3\sqrt{17}}{4}$, then x converges quadratically to a root x^* and $||x - x^*|| \le 2\beta(F, x)$.

$$= x - F'(x)^{-1}F(x). \text{ Define}$$

= $\beta(F, x)\gamma(F, x)$
 $N_F(x) \| = \|F'(x)^{-1}F(x)\|$
 $\|\frac{F'(x)^{-1}F^{(k)}(x)}{k!}\|^{\frac{1}{k-1}}$

Two paradigms -- Smale's α -theory

Proposition (Shub-Smale 1993).

- F be a square polynomial system with nonsingular F'(x) at $x \in \mathbb{C}^n$. Define

with the operator norm. Then,

 $\gamma(F, x) \leq$

where d is the maximum degree of the polynomials.

 $\mu(F, x) := \max\{1, \|F\| \|F'(x)^{-1} \Delta_F(x)\|\}$

$$\leq \frac{\mu(F, x)d^{\frac{3}{2}}}{2\|(1, x)\|}$$

Two paradigms -- Krawczyk method

Combine interval arithmetic and Newton's method

Define the <u>Krawczyk operator</u>

$$K_{x,Y}(I) = x - YF(x) -$$

- *I* : an interval to certify
- $\Box F(I) := \{F(x) \mid x \in I\}$: an interval extension of F over I
- x : a point in I
- *Y* : an invertible matrix

• Interval arithmetic : For an arithmetic operator \bigcirc , define $[a, b] \bigcirc [c, d] = \{x \odot y \mid x \in [a, b], y \in [c, d]\}$

$+ (Id - Y \Box F'(I))(I - x)$

Two paradigms -- Krawczyk method

Theorem (Krawczyk 1969).

The following holds:

- 1. If $x^* \in I$ is a root of *F*, then $x^* \in K_{x,Y}(I)$
- 2. If $K_{X,Y}(I) \subset I$, then there is a root of F in I (existence)
- 3. If *I* has a root and $\sqrt{2} \|Id Y \square F'(I)\| < 1$, then there is a root of *F* in *I* and it is unique where $\|\cdot\|$ is the maximum operator norm (uniqueness)

Demo 1 -- Regular solution certification

Certifying singular solutions

$$F(x, y, z) = [x^3 - yz, y^3 - xz, z^3 - xy]$$

the origin.

o2 = How to certify the cluster of roots?

o1 = has 16 regular roots and <u>1 multiple root</u> at the origin with <u>multiplicity 11</u>. Solving F using numerical solver gives a cluster of 11 numerical roots at

Deflation -- Recovering quadratic convergence for singular solutions

Introduce more variables and equations and generate an augmented system with reduced multiplicity.

Deflation -- Recovering quadratic convergence for singular solutions

Deflation (Leykin-Verschelde-Zhao 2006)

- $F: a n \times n$ -square polynomial system with an isolated multiple root x^* such that $\dim \ker F'(x^{\star}) = \kappa$
- B : a generic $n \times (n \kappa + 1)$ matrix
- b : a generic vector in $\mathbb{C}^{n-\kappa+1}$.

There is a unique vector $\lambda \in \mathbb{C}^{n-\kappa+1}$ such that $(x^{\star}, \lambda) \in \mathbb{C}^{2n-\kappa+1}$ is a root with

 $\frac{\text{reduced multiplicity of } H = \begin{bmatrix} F \\ F' \cdot B \cdot \lambda \\ b^{\top} \cdot \lambda - 1 \end{bmatrix}.$

If (x^{\star}, λ) remains singular, iterate the process. (The algorithm terminates within finitely many iterations.)

Deflation -- Recovering quadratic convergence for singular solutions

Construct a system $F(x) + F'(x) \cdot \lambda$ with a randomly chosen kernel vector λ . Apply regular solution certification.

Demo 2 -- Singular solution certification

certifySolutions -- certify a given list of solutions

Thank you for your attention!