NumericalCertification
 -- certifying roots of polynomial systems on Macaulay2

Author

- Kisun Lee kisunlee@ucsd.edu

Event

- Macaulay2 conference at CSU
- May 29th 2022

Numerical algebraic geometry

-- Use numerical techniques to approach problems in algebraic geometry

- Homotopy continuation

Numerical algebraic geometry

-- Use numerical techniques to approach problems in algebraic geometry

- Homotopy continuation
- Mostly rely on heuristic : Certification is needed

Newton's method -- Use tangent lines to approximate a root

Newton's method -- Use tangent lines to approximate a root

Newton's method -- Use tangent lines to approximate a root

Newton's method -. Use tangent lines to approximate a root

Newton's method shows fast convergence

- Quadratic convergence
- Approximates root precisely within few iterations

Newton's method -. Use tangent lines to approximate a root

Newton's method shows fast convergence

- Quadratic convergence
- Approximates root precisely within few iterations

$$
\begin{aligned}
& \text { ex) } f(x)=x^{2}-2, \quad x_{0}=1 \\
& x_{1}=1.5 \quad x_{2}=1.4167 \quad x_{3}=1.414213562 \\
& x_{4}=1.4142135623731 \\
& \sqrt{2}=1.4142135623731 \cdots
\end{aligned}
$$

Newton's method -- Use tangent lines to approximate a root

Newton's method may fail

- Depends on where to start from.
- Works only for regular roots.

Certifying solutions

Given a point in \mathbb{C}^{n} (or \mathbb{R}^{n}), apply an algorithm to construct a compact region I to ensure

1. the existence
2. the uniqueness
of a root of a system in I.

Basin of attraction for $z^{3}-1$

Certifying solutions

Given a point in \mathbb{C}^{n} (or \mathbb{R}^{n}), apply an algorithm
to construct a compact region I to ensure

1. the existence
2. the uniqueness
of a root of a system in I.

Implementations

- alphaCertified (Hauenstein-Sottile 2012)
- certify in HomotopyContinuation.jl (Breiding-Rose-Timme 2020)

Certifying solutions

Given a point in \mathbb{C}^{n} (or \mathbb{R}^{n}), apply an algorithm
to construct a compact region I to ensure

1. the existence
2. the uniqueness
of a root of a system in I.

Implementations

- alphaCertified (Hauenstein-Sottile 2012)
- certify in HomotopyContinuation.jl (Breiding-Rose-Timme 2020)
- NumericalCertification.m2 (Lee 2019)

Two paradigms -- Smale's α-theory

Certify quadratic convergence of a numerical root
Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$ a point and $N_{F}(x)=x-F^{\prime}(x)^{-1} F(x)$. Define

$$
\begin{gathered}
\alpha(F, x):=\beta(F, x) \gamma(F, x) \\
\beta(F, x):=\left\|x-N_{F}(x)\right\|=\left\|F^{\prime}(x)^{-1} F(x)\right\| \\
\gamma(F, x):=\sup _{k \geq 2}\left\|\frac{F^{\prime}(x)^{-1} F^{(k)}(x)}{k!}\right\|^{\frac{1}{k-1}}
\end{gathered}
$$

If $\alpha(F, x)<\frac{13-3 \sqrt{17}}{4}$, then x converges quadratically to a root x^{\star} and $\left\|x-x^{\star}\right\| \leq 2 \beta(F, x)$.

Two paradigms -- Smale's α-theory

Proposition (Shub-Smale 1993).

F be a square polynomial system with nonsingular $F^{\prime}(x)$ at $x \in \mathbb{C}^{n}$. Define

$$
\mu(F, x):=\max \left\{1,\|F\|\left\|F^{\prime}(x)^{-1} \Delta_{F}(x)\right\|\right\}
$$

with the operator norm. Then,

$$
\gamma(F, x) \leq \frac{\mu(F, x) d^{\frac{3}{2}}}{2\|(1, x)\|}
$$

where d is the maximum degree of the polynomials.

Two paradigms -- Krawczyk method

Combine interval arithmetic and Newton's method

- Interval arithmetic : For an arithmetic operator \odot, define $[a, b] \odot[c, d]=\{x \odot y \mid x \in[a, b], y \in[c, d]\}$

Define the Krawczyk operator

$$
K_{x, Y}(I)=x-Y F(x)+\left(I d-Y \square F^{\prime}(I)\right)(I-x)
$$

- I : an interval to certify
- $\square F(I):=\{F(x) \mid x \in I\}$: an interval extension of F over I
- x : a point in I
- Y : an invertible matrix

Two paradigms -- Krawczyk method

Theorem (Krawczyk 1969).

The following holds:

1. If $x^{\star} \in I$ is a root of F, then $x^{\star} \in K_{x, Y}(I)$
2. If $K_{x, Y}(I) \subset I$, then there is a root of F in I (existence)
3. If I has a root and $\sqrt{2}\left\|I d-Y \square F^{\prime}(I)\right\|<1$, then there is a root of F in I and it is unique where $\|\cdot\|$ is the maximum operator norm (uniqueness)
next | previous | forward $\mid \underline{\text { backward } \mid \text { up } \mid \text { top }|\underline{\text { index }}| \text { toc } \mid ~ M a c a u l a y 2 ~ w e b s i t e ~}$
NumericalCertification :: NumericalCertification

Demo 1 -- Regular solution certification

Certifying singular solutions

$$
F(x, y, z)=\left[x^{3}-y z, y^{3}-x z, z^{3}-x y\right]
$$

01 = has 16 regular roots and 1 multiple root at the origin with multiplicity 11. Solving F using numerical solver gives a cluster of 11 numerical roots at the origin.

02 = How to certify the cluster of roots?
next | previous | forward $\mid \underline{\text { backward } \mid \text { up } \mid \text { top } \mid \text { index } \mid \text { toc } \mid \underline{M a c a u l a y 2 ~ w e b s i t e ~}}$
NumericalCertification :: NumericalCertification

Deflation -- Recovering quadratic convergence for singular solutions

Introduce more variables and equations and generate an augmented system with reduced multiplicity.

Deflation -- Recovering quadratic convergence for singular solutions

Deflation (Leykin-Verschelde-Zhao 2006)

- F : a $n \times n$-square polynomial system with an isolated multiple root x^{\star} such that $\operatorname{dim} \operatorname{ker} F^{\prime}\left(x^{\star}\right)=\kappa$
- B : a generic $n \times(n-\kappa+1)$ matrix
- b : a generic vector in $\mathbb{C}^{n-\kappa+1}$.

There is a unique vector $\lambda \in \mathbb{C}^{n-\kappa+1}$ such that $\left(x^{\star}, \lambda\right) \in \mathbb{C}^{2 n-\kappa+1}$ is a root with reduced multiplicity of $H=\left[\begin{array}{c}F \\ F^{\prime} \cdot B \cdot \lambda \\ b^{\top} \cdot \lambda-1\end{array}\right]$.
If $\left(x^{\star}, \lambda\right)$ remains singular, iterate the process.
(The algorithm terminates within finitely many iterations.)
next | previous | forward $\mid \underline{\text { backward } \mid \text { up } \mid \text { top } \mid \text { index } \mid \text { toc } \mid ~ M a c a u l a y 2 ~ w e b s i t e ~}$
NumericalCertification :: NumericalCertification

Deflation -- Recovering quadratic convergence for singular solutions

Construct a system $F(x)+F^{\prime}(x) \cdot \lambda$ with a randomly chosen kernel vector λ. Apply regular solution certification.
next | previous | forward $\mid \underline{\text { backward } \mid \text { up } \mid \text { top }|\underline{\text { index }}| \text { toc } \mid ~ M a c a u l a y 2 ~ w e b s i t e ~}$
NumericalCertification :: NumericalCertification

Demo 2 -- Singular solution certification

next | previous | forward $\mid \underline{\text { backward } \mid \text { up } \mid \text { top }|\underline{\text { index } \mid ~ t o c ~}| \underline{M a c a u l a y 2 ~ w e b s i t e ~}}$
NumericalCertification :: NumericalCertification

certifySolutions -- certify a given list of solutions

Thank you for your attention!

