Certifying Roots of Polynomial Systems on Macaulay2

Kisun Lee
Georgia Institute of Technology

International Symposium on Symbolic \& Algebraic Computation
Beijing, China

Certifying

(regular)

Solutions

Given a compact region $I \subset \mathbb{C}^{n}\left(\right.$ or $\left.\mathbb{R}^{n}\right)$, apply an algorithm to certify
(1) the existence
(2) the uniqueness
of a root of a system in I.

Certifying

(regular)

Solutions

Given a compact region $I \subset \mathbb{C}^{n}\left(\right.$ or $\left.\mathbb{R}^{n}\right)$, apply an algorithm to certify
(1) the existence
(2) the uniqueness
of a root of a system in I.

Previous Implementations

alphaCertified : Hauenstein and Sottile (2012)
implement α-Theory

NumericalCertification.m2

Available at https://github.com/klee669/M2

Software Requirement

Macaulay2 version 1.14

Functionality

- M2 Internal certification package
- α-Theory / Interval arithmetic implementation
- Easier interface

Two Paradigms

Krawczyk method

combines interval arithmetic and Newton's method

Interval arithmetic

- For any arithmetic operator \odot,
$[a, b] \odot[c, d]=\{x \odot y \mid x \in[a, b], y \in[c, d]\}$

α-Theory

certify an approximation converges to a solution quadratically

Quadratic convergence

- For $N_{F}(x):=x-F^{\prime}(x)^{-1} F(x)$
(Newton operator),

$$
\left\|N_{F}^{k}(x)-x^{*}\right\| \leq\left(\frac{1}{2}\right)^{2^{k}-1}\left\|x-x^{*}\right\|
$$

Two Paradigms - Krawczyk method

F : a square differentiable system on $U \subset \mathbb{C}^{n}$
I : an interval to certify
$\square F(I):=\{F(x) \mid x \in I\}$: an interval extension of F over an interval I
y : a point in I
Y : an invertible matrix
Define the Krawczyk operator

$$
K_{y}(I)=y-Y F(y)+\left(I d-Y \square F^{\prime}(I)\right)(I-y)
$$

Two Paradigms - Krawczyk method

$F:$ a square differentiable system on $U \subset \mathbb{C}^{n}$
I : an interval to certify
$\square F(I):=\{F(x) \mid x \in I\}$: an interval extension of F over an interval I
y : a point in I
Y : an invertible matrix
Define the Krawczyk operator

$$
K_{y}(I)=y-Y F(y)+\left(I d-Y \square F^{\prime}(I)\right)(I-y)
$$

Theorem (Krawczyk 1969). The following holds:
(1) If $x \in I$ is a root of F, then $x \in K_{y}(I)$
(2) If $K_{y}(I) \subset I$, then there is a root of F in I (existence)
(3) If I has a root and $\sqrt{2}\left\|I d-Y \square F^{\prime}(I)\right\|<1$, then there is a root of F in I and it is unique where $\|\cdot\|$ is the maximum operator norm (uniqueness)

Two Paradigms - α-Theory

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be a point in \mathbb{C}^{n} and $N_{F}(x)=x-F^{\prime}(x)^{-1} F(x)$.

$$
\begin{aligned}
\alpha(F, x) & :=\beta(F, x) \gamma(F, x) \\
\beta(F, x) & :=\left\|x-N_{F}(x)\right\|=\left\|F^{\prime}(x)^{-1} F(x)\right\| \\
\gamma(F, x) & :=\sup _{k \geq 2}\left\|\frac{F^{\prime}(x)^{-1} F^{(k)}(x)}{k!}\right\|^{\frac{1}{k-1}}
\end{aligned}
$$

Two Paradigms - α-Theory

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be a point in \mathbb{C}^{n} and $N_{F}(x)=x-F^{\prime}(x)^{-1} F(x)$.

$$
\begin{aligned}
\alpha(F, x) & :=\beta(F, x) \gamma(F, x) \\
\beta(F, x) & :=\left\|x-N_{F}(x)\right\|=\left\|F^{\prime}(x)^{-1} F(x)\right\| \\
\gamma(F, x) & :=\sup _{k \geq 2}\left\|\frac{F^{\prime}(x)^{-1} F^{(k)}(x)}{k!}\right\|^{\frac{1}{k-1}}
\end{aligned}
$$

If $\alpha(F, x)<\frac{13-3 \sqrt{17}}{4}$, then x converges quadratically to x^{*}. Also, $\left\|x-x^{*}\right\| \leq 2 \beta(F, x)$.

Two Paradigms - α-Theory

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be a point in \mathbb{C}^{n} and $N_{F}(x)=x-F^{\prime}(x)^{-1} F(x)$.

$$
\begin{aligned}
\alpha(F, x) & :=\beta(F, x) \gamma(F, x) \\
\beta(F, x) & :=\left\|x-N_{F}(x)\right\|=\left\|F^{\prime}(x)^{-1} F(x)\right\| \\
\gamma(F, x) & :=\sup _{k \geq 2}\left\|\frac{F^{\prime}(x)^{-1} F^{(k)}(x)}{k!}\right\|^{\frac{1}{k-1}} \leq \frac{\mu(F, x) D^{\frac{3}{2}}}{2\|x\|_{1}} \text { (Shub, Smale 1993) }
\end{aligned}
$$

If $\alpha(F, x)<\frac{13-3 \sqrt{17}}{4}$, then x converges quadratically to x^{*}. Also, $\left\|x-x^{*}\right\| \leq 2 \beta(F, x)$.

Two Paradigms - α-Theory

If $\alpha(F, x)<\frac{13-3 \sqrt{17}}{4}$, then x converges quadratically to x^{*}. Also, $\left\|x-x^{*}\right\| \leq 2 \beta(F, x)$.

Demonstration - α-Theory

i1 : needsPackage "NumericalCertification";
i2 : $R=R R[x 1, x 2, y 1, y 2]$;

Demonstration - α-Theory

i1 : needsPackage "NumericalCertification";
i2 : R = RR[x1, x2, y1, y2];
i3 : f = polySystem \{3*y1 + 2*y2 -1, $\left.3 * x 1+2 * x 2-3.5, x 1^{\wedge} 2+y 1^{\wedge} 2-1, x 2^{\wedge} 2+y 2^{\wedge} 2-1\right\}$;

Demonstration - α-Theory

i1 : needsPackage "NumericalCertification";
i2 : R = RR[x1, x2, y1, y2];
i3 : f = polySystem \{3*y1 + 2*y2-1, $\left.3 * x 1+2 * x 2-3.5, x 1^{\wedge} 2+y 1^{\wedge} 2-1, x 2^{\wedge} 2+y 2^{\wedge} 2-1\right\}$;
i4 : p1 = point\{\{.95, .32, -.30, .95\}\};

Demonstration - α-Theory

```
i1 : needsPackage "NumericalCertification";
i2 : R = RR[x1,x2,y1,y2];
i3 : f = polySystem {3*y1 + 2*y2 -1, 3*x1 + 2*x2 -3.5, x1^2 + y1^2 -1, x2^2 + y2^2 -1};
i4 : p1 = point{{.95, .32, -. 30, .95}};
i5 : computeConstants(f,p1)
05 = 05 = (.00621269, .0000277104, 224.2)
o5 : Sequence
```


Demonstration - α-Theory

```
il : needsPackage "NumericalCertification";
i2 : R = RR[x1,x2,y1,y2];
i3 : f = polySystem {3*y1 + 2*y2 -1, 3*x1 + 2*x2 -3.5, x1^2 + y1^2 -1, x2^2 + y2^2 -1};
i4 : pl = point{{.95, .32, -.30, .95}};
i5 : computeConstants(f,p1)
o5 = o5 = (.00621269, .0000277104, 224.2)
05 : Sequence
i6 : certifySolution(f,pl)
o6 = true
```


Demonstration - α-Theory

```
i1 : needsPackage "NumericalCertification";
i2 : R = RR[x1,x2,y1,y2];
i3 : f = polySystem {3*y1 + 2*y2 -1, 3*x1 + 2*x2 -3.5, x1^2 + y1^2 -1, x2^2 + y2^2 -1};
i4 : p1 = point{{.95, .32, -.30, .95}};
i5 : computeConstants(f,p1)
o5 = o5 = (.00621269, .0000277104, 224.2)
05 : Sequence
i6 : certifySolution(f,p1)
o6 = true
i7 : p2 = point{{.9, .3, -.3, 1}}; -- poorly approximated solution
```


Demonstration - α-Theory

```
i1 : needsPackage "NumericalCertification";
i2 : R = RR[x1,x2,y1,y2];
i3 : f = polySystem {3*y1 + 2*y2 -1, 3*x1 + 2*x2 -3.5, x1^2 + y1^2 -1, x2^2 + y2^2 -1};
i4 : p1 = point{{.95, .32, -.30, .95}};
i5 : computeConstants(f,p1)
o5 = o5 = (.00621269, .0000277104, 224.2)
05 : Sequence
i6 : certifySolution(f,p1)
o6 = true
i7 : p2 = point{{.9, .3, -.3, 1}}; -- poorly approximated solution
i8 : certifySolution(f,p2) -- not an approximate solution
08 = false
```


Demonstration - α-Theory

```
i9 : p1 = point{{.95,.32,-.30,.95}};
i10 : p3 = point{{.65,.77,.76,-.64}}; -- two approximate solutions
```


Demonstration - α-Theory

```
i9 : p1 = point{{.95,.32,-.30,.95}};
i10 : p3 = point{{.65,.77,.76,-.64}}; -- two approximate solutions
i11 : certifyDistinctSoln(f,p1,p3)
011 = true
```


Demonstration - α-Theory

```
i9 : p1 = point{{.95,.32,-.30,.95}};
i10 : p3 = point{{.65,.77,.76,-.64}}; -- two approximate solutions
i11 : certifyDistinctSoln(f,p1,p3)
o11 = true
i12 : p1 = point{{.954379+ii*.001043 , .318431, -.298633, .947949}};
-- a complex approximate root close to an actual root
```


Demonstration - α-Theory

```
i9 : p1 = point{{.95,.32,-.30,.95}};
i10 : p3 = point{{.65,.77,.76,-.64}}; -- two approximate solutions
i11 : certifyDistinctSoln(f,p1,p3)
011 = true
i12 : p1 = point{{.954379+ii*.001043 , .318431, -.298633, .947949}};
-- a complex approximate root close to an actual root
i13 : certifyRealSoln(f,pl)
o13 = true
```


Demonstration - Krawczyk method

```
i2 : R = RR[x1,x2,y1,y2];
i3 : f = polySystem {3*y1 + 2*y2 -1, 3*x1 + 2*x2 -3.5, x1^2 + y1^2 -1, x2^2 + y2^2 -1};
```


Demonstration - Krawczyk method

```
i2 : R = RR[x1,x2,y1,y2];
i3 : f = polySystem {3*y1 + 2*y2 -1, 3*x1 + 2*x2 -3.5, x1^2 + y1^2 -1, x2^2 + y2^2 -1};
i4 : (I1, I2, I3, I4) = (interval(.94,.96), interval(.31,.33),
interval(-.31,-.29), interval(.94,.96));
```


Demonstration - Krawczyk method

```
i2 : R = RR[x1,x2,y1,y2];
i3 : f = polySystem {3*y1 + 2*y2 -1, 3*x1 + 2*x2 -3.5, x1^2 + y1^2 -1, x2^2 + y2^2 -1};
i4 : (I1, I2, I3, I4) = (interval(.94,.96), interval(.31,.33),
                                interval(-.31,-.29), interval(.94,.96));
i5 : o = intervalOptionList apply({x1 => I1, x2 => I2, y1 => I3, y2 => I4},
    i -> intervalOption i);
```


Demonstration - Krawczyk method

```
i2 : R = RR[x1,x2,y1,y2];
i3 : f = polySystem {3*y1 + 2*y2 -1, 3*x1 + 2*x2 -3.5, x1^2 + y1^2 -1, x2^2 + y2^2 -1};
i4 : (I1, I2, I3, I4) = (interval(.94,.96), interval(.31,.33),
                                interval(-.31,-.29), interval(.94,.96));
i5 : 0 = intervalOptionList apply({x1 => I1, x2 => I2, y1 => I3, y2 => I4},
    i -> intervalOption i);
i6 : krawczykOper(f,o)
-- warning: experimental computation over inexact field begun
-- results not reliable (one warning given per session)
06 = {{[.954149, . 954609]}, {[.318086, . 318777]}, {[-. 298824, -. 298442]},
    {[.947663, .948236]}}
06 : IntervalMatrix
```


Demonstration - Krawczyk method

```
i2 : R = RR[x1,x2,y1,y2];
i3 : f = polySystem {3*y1 + 2*y2 -1, 3*x1 + 2*x2 -3.5, x1^2 + y1^2 -1, x2^2 + y2^2 -1};
i4 : (I1, I2, I3, I4) = (interval(.94,.96), interval(.31,.33),
                                interval(-.31,-.29), interval(.94,.96));
i5 : o = intervalOptionList apply({x1 => I1, x2 => I2, y1 => I3, y2 => I4},
    i -> intervalOption i);
i6 : krawczykOper(f,o)
-- warning: experimental computation over inexact field begun
-- results not reliable (one warning given per session)
o6 = {{[.954149, .954609]}, {[.318086, .318777]}, {[-. 298824, -. 298442]},
    {[.947663, .948236]}}
06 : IntervalMatrix
i7 : krawczykMethod(f,o)
given interval contains a unique solution
o7 = true
```


Demonstration - exact computation

i2 : $\mathrm{R}=\mathrm{QQ}[\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1, \mathrm{y} 2] ;-$ computation over Q

Demonstration - exact computation

```
i2 : R = QQ[x1,x2,y1,y2]; -- computation over Q
i3 : f = polySystem {3*y1 + 2*y2 -1, 3*x1 + 2*x2 -7/2, x1^2 + y1^2 -1, x2^2 + y2^2 -1};
i4 : p1 = point{{95/100, 32/100, -30/100, 95/100}}; -- exact input
```


Demonstration - exact computation

```
i2 : R = QQ[x1,x2,y1,y2]; -- computation over Q
i3 : f = polySystem {3*y1 + 2*y2 -1, 3*x1 + 2*x2 -7/2, x1^2 + y1^2 -1, x2^2 + y2^2 -1};
i4 : p1 = point{{95/100, 32/100, -30/100, 95/100}}; -- exact input
i5 : computeConstants(f,p1)
    21324026093882418049 17681521 120600632116900
05 = (-------------------------------, ------------------
    3432333340166716036800 638081440000 537914617947
```


Demonstration - exact computation

```
i2 : R = QQ[x1,x2,y1,y2]; -- computation over Q
i3 : f = polySystem {3*y1 + 2*y2 -1, 3*x1 + 2*x2 -7/2, x1^2 + y1^2 -1, x2^2 + y2^2 -1};
i4 : p1 = point{{95/100, 32/100, -30/100, 95/100}}; -- exact input
i5 : computeConstants(f,p1)
    21324026093882418049 17681521 120600632116900
05 = (--------------------, -----------, ------------------)
i6 : certifySolution(f,p1)
o6 = true
```


Demonstration - exact computation

```
i2 : R = QQ[x1,x2,y1,y2];
i3 : f = polySystem {3*y1 + 2*y2 -1, 3*x1 + 2*x2 -7/2, x1^2 + y1^2 -1, x2^2 + y2^2 -1};
i4 : (I1, I2, I3, I4) = (interval(94/100,96/100), interval(31/100,33/100),
                                    interval(-31/100,-29/100), interval(94/100,96/100));
i5 : o = intervalOptionList apply({x1 => I1, x2 => I2, y1 => I3, y2 => I4},
    i -> intervalOption i);
```


Demonstration - exact computation

```
i2 : R = QQ[x1,x2,y1,y2];
i3 : f = polySystem {3*y1 + 2*y2 -1, 3*x1 + 2*x2 -7/2, x1^2 + y1^2 -1, x2^2 + y2^2 -1};
i4 : (I1, I2, I3, I4) = (interval(94/100,96/100), interval(31/100,33/100),
                                interval(-31/100,-29/100), interval(94/100,96/100));
i5 : 0 = intervalOptionList apply({x1 => I1, x2 => I2, y1 => I3, y2 => I4},
    i -> intervalOption i);
```

381087	381271	254087	254639	895127	893983
$06=\{\{[$					
399400	399400	798800	798800	2995500	2995500
1892483	1893627				
\{[------, ------]\}\}					
1997000	1997000				

Demonstration - exact computation

```
i2 : R = QQ[x1,x2,y1,y2];
i3 : f = polySystem {3*y1 + 2*y2 -1, 3*x1 + 2*x2 -7/2, x1^2 + y1^2 -1, x2^2 + y2^2 -1};
i4 : (I1, I2, I3, I4) = (interval(94/100,96/100), interval(31/100,33/100),
                                interval(-31/100,-29/100), interval(94/100,96/100));
i5 : o = intervalOptionList apply({x1 => I1, x2 => I2, y1 => I3, y2 => I4},
    i -> intervalOption i);
```

381087	381271	254087	254639	895127	893983
$06=\{\{[$					
399400	399400	798800	798800	2995500	2995500
1892483	1893627				
\{[------, -------]\}\}					
1997000	1997000				

i7 : krawczykMethod(f,o)
07 = true

Demonstration - exact computation

i2 : FF = QQ[i]/ideal(i^2+1) -- Gaussian rational (extension of Q with imaginary numbers)
$02=\mathrm{FF}$
02 : QuotientRing

Demonstration - exact computation

```
i2 : FF = QQ[i]/ideal(i^2+1) -- Gaussian rational (extension of Q with imaginary numbers)
02 = FF
o2 : QuotientRing
i3 : R = FF[x1,x2,y1,y2];
i4 : f = polySystem {3*y1 + 2*y2 -1, 3*x1 + 2*x2 -7/2, x1^2 + y1^2 -1, x2^2 + y2^2 -1};
i5 : p1 = point{{95/100, 32/100, -30/100, 95/100}};
```


Demonstration - exact computation

```
i2 : FF = QQ[i]/ideal(i^2+1) -- Gaussian rational (extension of Q with imaginary numbers)
02 = FF
o2 : QuotientRing
i3 : R = FF[x1,x2,y1,y2];
i4 : f = polySystem {3*y1 + 2*y2 -1, 3*x1 + 2*x2 -7/2, x1^2 + y1^2 -1, x2^2 + y2^2 -1};
i5 : p1 = point{{95/100, 32/100, -30/100, 95/100}};
i6 : certifySolution(f,pl)
Warning: invertibility check for Jacobian is skipped for Gaussian rational inputs
o6 = true
```


Thanks for your attention!

