Homotopy techniques for analytic combinatorics in several variables

(joint work with Stephen Melczer ${ }^{\dagger}$ and Josip Smolčić ${ }^{\dagger}$)
\dagger University of Waterloo

Kisun Lee (UC San Diego) - kisunlee@ucsd.edu
Joint Mathematics Meetings 2023 - AMS Special Session on Applied Enumerative Geometry

Acknowledgements

MATHEMATICS
RESEARCH COMMUNITIES

This work was started and supported in the AMS Math Research Community 2021
Combinatorial Applications of Computational Geometry and Algebraic Topology

Analytic combinatorics

$\left(f_{n}\right)=f_{1}, f_{2}, \ldots$: a sequence of complex numbers.
$F(z)=\sum_{i=1}^{\infty} f_{i} z^{i}$: the generating function of the
sequence.

- The generating function can be considered as the power series expansion of a complex valued function.
Q. Can we study the asymptotic behavior of $\left(f_{n}\right)$ using the (analutic) behavior of F ?
- (Cauchy integral formula). $f_{n}=\frac{1}{2 \pi i} \int_{\gamma} F(z) \frac{d z}{z^{n+1}}$
$F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$ the multivariate generating
function of the sequence.
- Specifically, the r-diagonal sequence $\left(f_{n \mathbf{r}}\right)$ forany $\mathbf{r} \in \mathbb{R}^{n}$ is considered.- The common situation to arise in practice is themain-diagonal $\mathbf{r}=1$ Ex) (Furstenherg 1967), (Christol1984), (Chudnovsky-Chudnovsky 1985), (André 2000)
- Applications : Lattice path enumeration, random walks, and so on.

Analytic combinatorics

$\left(f_{n}\right)=f_{1}, f_{2}, \ldots$: a sequence of complex numbers.
$F(z)=\sum_{i=1}^{\infty} f_{i} z^{i}$: the generating function of the
sequence.

- The generating function can be considered as the nower series expansion of a complex valued function
Q. Can we study the asymptotic behavior of $\left(f_{n}\right)$ using the (analytic) behavior of F ?
$F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}:$ the multivariate generating
function of the sequence.
- Specifically, the r-diagonal sequence $\left(f_{n \mathbf{r}}\right)$ for any $\mathbf{r} \in \mathbb{R}^{n}$ is considered.
- The common situation to arise in practice is the main-diagonal $r=1$. Ex) (Furstenberg 1967), (Christol 1984), (Chudnovsky-Chudnovsky 1985), (André 2000)
- Applications : Lattice path enumeration, random walks, and so on.

Analytic combinatorics

Analytic combinatorics in several variables

$\left(f_{n}\right)=f_{1}, f_{2}, \ldots$: a sequence of complex numbers.
$F(z)=\sum_{i=1}^{\infty} f_{i} z^{i}$: the generating function of the
sequence.

- The generating function can be considered as the power series expansion of a complex valued function.
Q. Can we study the asymptotic behavior of $\left(f_{n}\right)$ using the (analytic) hehavior of F ?
- (Cauchy integral formula). $f_{n}=\frac{1}{2 \pi i} \int_{\gamma} F(z) \frac{d z}{z^{n+1}}$
$F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}:$ the multivariate generating
function of the sequence.
- Specifically, the r-diagonal sequence $\left(f_{n \mathbf{r}}\right)$ for any $\mathbf{r} \in \mathbb{R}^{n}$ is considered.
- The common situation to arise in practice is the main-diagonal $\mathbf{r}=\mathbf{1}$. Ex) (Furstenberg 1967), (Christol 1984), (Chudnovsky-Chudnovsky 1985), (André 2000)
- Applications : Lattice path enumeration, random walks, and so on.

Analytic combinatorics

Analytic combinatorics in several variables

$\left(f_{n}\right)=f_{1}, f_{2}, \ldots$: a sequence of complex numbers.
$F(z)=\sum_{i=1}^{\infty} f_{i} z^{i}$: the generating function of the
sequence.

- The generating function can be considered as the power series expansion of a complex valued function.
Q. Can we study the asymptotic behavior of $\left(f_{n}\right)$ using the (analytic) behavior of F ?
- (Cauchy integral formula). $f_{n}=\frac{1}{2 \pi i} \int_{\gamma} F(z) \frac{d z}{z^{n+1}}$
$F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}:$ the multivariate generating
function of the sequence.
- Specifically, the r-diagonal sequence $\left(f_{n \mathbf{r}}\right)$ for any $\mathbf{r} \in \mathbb{R}^{n}$ is considered
- The common situation to arise in practice is the main-diagonal $\mathbf{r}=\mathbf{1}$. Ex) (Furstenberg 1967), (Christol 1984), (Chudnovsky-Chudnovsky 1985), (André 2000)
- Applications : Lattice path enumeration, random walks, and so on.

Analytic combinatorics

Analytic combinatorics in several variables

$\left(f_{n}\right)=f_{1}, f_{2}, \ldots$: a sequence of complex numbers.
$F(z)=\sum_{i=1}^{\infty} f_{i} z^{i}$: the generating function of the
sequence.

- The generating function can be considered as the power series expansion of a complex valued function.
Q. Can we study the asymptotic behavior of $\left(f_{n}\right)$ using the (analytic) behavior of F ?
- (Cauchy integral formula). $f_{n}=\frac{1}{2 \pi i} \int_{\gamma} F(z) \frac{d z}{z^{n+1}}$
$F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}:$ the multivariate generating
function of the sequence.
- Specifically, the r-diagonal sequence $\left(f_{n \mathbf{r}}\right)$ for any $\mathbf{r} \in \mathbb{R}^{n}$ is considered.
- The common situation to arise in practice is the main-diagonal r = 1. Ex) (Furstenberg 1967), (Christol 1984), (Chudnovsky-Chudnovsky 1985), (André 2000)
- Applications : Lattice path enumeration, random walks, and so on.

Analytic combinatorics

$\left(f_{n}\right)=f_{1}, f_{2}, \ldots$: a sequence of complex numbers.
$F(z)=\sum_{i=1}^{\infty} f_{i} z^{i}$: the generating function of the sequence.

- The generating function can be considered as the power series expansion of a complex valued function.
Q. Can we study the asymptotic behavior of $\left(f_{n}\right)$ using the (analytic) behavior of F ?
- (Cauchy integral formula). $f_{n}=\frac{1}{2 \pi i} \int_{\gamma} F(z) \frac{d z}{z^{n+1}}$

Analytic combinatorics in several variables

$F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: the multivariate generating function of the sequence.

- Specifically, the r-diagonal sequence ($f_{n \mathbf{r}}$) for any $\mathbf{r} \in \mathbb{R}^{n}$ is considered.
- The common situation to arise in practice is the main-diagonal $\mathbf{r}=\mathbf{1}$. Ex) (Furstenberg 1967), (Christol 1984), (Chudnovsky-Chudnovsky 1985), (André 2000)
- Applications : Lattice path enumeration, random walks, and so on.

Analytic combinatorics

$\left(f_{n}\right)=f_{1}, f_{2}, \ldots$: a sequence of complex numbers.
$F(z)=\sum_{i=1}^{\infty} f_{i} z^{i}$: the generating function of the
sequence.

- The generating function can be considered as the power series expansion of a complex valued function.
Q. Can we study the asymptotic behavior of $\left(f_{n}\right)$ using the (analytic) behavior of F ?
- (Cauchy integral formula). $f_{n}=\frac{1}{2 \pi i} \int_{\gamma} F(z) \frac{d z}{z^{n+1}}$

Analytic combinatorics in several variables

$F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}:$ the multivariate generating function of the sequence.

- Specifically, the \mathbf{r}-diagonal sequence $\left(f_{n \mathbf{r}}\right)$ for any $\mathbf{r} \in \mathbb{R}^{n}$ is considered.
- The common situation to arise in practice is the main-diagonal $\mathbf{r}=\mathbf{1}$. Ex) (Furstenberg 1967), (Christol 1984), (Chudnovsky-Chudnovsky 1985), (André 2000)
- Applications : Lattice path enumeration, random walks, and so on.

Analytic combinatorics

$\left(f_{n}\right)=f_{1}, f_{2}, \ldots$: a sequence of complex numbers.
$F(z)=\sum_{i=1}^{\infty} f_{i} z^{i}$: the generating function of the sequence.

- The generating function can be considered as the power series expansion of a complex valued function.
Q. Can we study the asymptotic behavior of $\left(f_{n}\right)$ using the (analytic) behavior of F ?
- (Cauchy integral formula). $f_{n}=\frac{1}{2 \pi i} \int_{\gamma} F(z) \frac{d z}{z^{n+1}}$

Analytic combinatorics in several variables

$F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: the multivariate generating function of the sequence.

- Specifically, the \mathbf{r}-diagonal sequence $\left(f_{n \mathbf{r}}\right)$ for any $\mathbf{r} \in \mathbb{R}^{n}$ is considered.
- The common situation to arise in practice is the main-diagonal $\mathbf{r}=1$. Ex) (Furstenberg 1967), (Christol 1984), (Chudnovsky-Chudnovsky 1985), (André 2000)
- Applications : Lattice path enumeration, random walks, and so on.

Analytic combinatorics

$\left(f_{n}\right)=f_{1}, f_{2}, \ldots$: a sequence of complex numbers.
$F(z)=\sum_{i=1}^{\infty} f_{i} z^{i}$: the generating function of the sequence.

- The generating function can be considered as the power series expansion of a complex valued function.
Q. Can we study the asymptotic behavior of $\left(f_{n}\right)$ using the (analytic) behavior of F ?
- (Cauchy integral formula). $f_{n}=\frac{1}{2 \pi i} \int_{\gamma} F(z) \frac{d z}{z^{n+1}}$

Analytic combinatorics in several variables

$F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: the multivariate generating function of the sequence.

- Specifically, the \mathbf{r}-diagonal sequence $\left(f_{n \mathbf{r}}\right)$ for any $\mathbf{r} \in \mathbb{R}^{n}$ is considered.
- The common situation to arise in practice is the main-diagonal $\mathbf{r}=1$. Ex) (Furstenberg 1967), (Christol 1984), (Chudnovsky-Chudnovsky 1985), (André 2000)
- Applications : Lattice path enumeration, random walks, and so on.

ACSV + Numerical algebraic geometry

ACSV + Numerical algebraic geometry

(Need a system of equations)

ACSV + Numerical algebraic geometry (how to construct a system of equations)

- $F(\mathbf{z})=\frac{G(\mathbf{z})}{H(\mathbf{z})}$ where G and H are co-prime polynomials with $H(\mathbf{0}) \neq 0$.
- Define Abs : $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left|z_{1} \cdots z_{n}\right|$
- We are interested in critical points of Abs
$F(\mathbb{z})=\sum_{i \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}:$ The Taylor expansion of F
centered at the origin with a nonempty open domain
of convergence $\mathscr{D} \subset \mathbb{C}^{n}$
- Interested in computing the asymptotic behavior of
coefficients of $\left(f_{i}\right)_{\text {; }}$.
- The critical points for Abs on \mathscr{V} are obtained by solving a polynomial system
$f_{i_{1}, \ldots, i_{n}}=\frac{1}{(2 \pi i)^{n}} \int_{\gamma} \frac{F(\mathbf{z})}{z_{1}^{i_{1}} \cdots z_{n}^{i_{n}}} \cdot \frac{d z_{1} \cdots d z_{n}}{z_{1} \cdots z_{n}}$. $H(\mathbf{z})=0, \quad z_{1} \frac{\partial H}{\partial z_{1}}=\cdots=z_{n} \frac{\partial H}{\partial z_{n}}$ (critical-point equations) - We assume that all critical points are smooth

ACSV + Numerical algebraic geometry (how to construct a system of equations)

- $F(\mathbf{z})=\frac{G(\mathbf{z})}{H(\mathbf{z})}$ where G and H are co-prime polynomials with $H(\mathbf{0}) \neq 0$.
. $F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}:$ The Taylor expansion of F centered at the origin with a nonempty open domain
of convergence $\mathscr{D} \subset \mathbb{C}^{n}$.
Interested in computing the asymptotic behav
coefficients of $\left(f_{\mathbf{i}}\right)_{\mathrm{i}}$.

$$
f_{i_{1}, \ldots, i_{n}}=\frac{1}{(2 \pi i)^{n}} \int_{\gamma} \frac{F(\mathbf{z})}{z_{1}^{i_{1} \cdots z_{n}^{i_{n}}}} \cdot \frac{d z_{1} \cdots d z_{n}}{z_{1} \cdots z_{n}}
$$

- Define Abs : $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left|z_{1} \cdots z_{n}\right|$
- We are interested in critical points of Abs
- $\mathscr{V}:=\left\{\mathbf{z} \in \mathbb{C}^{n} \mid H(\mathbf{z})=0\right\}$: the singular variety of $F=\frac{G}{H}$
- The critical points for Abs on \mathscr{V} are obtained by solving a polynomial system
. $H(\mathbf{z})=0, \quad z_{1} \frac{\partial H}{\partial z_{1}}=\cdots=z_{n} \frac{\partial H}{\partial z_{n}}$ (critical-point equations)

ACSV + Numerical algebraic geometry (how to construct a system of equations)

- $F(\mathbf{z})=\frac{G(\mathbf{z})}{H(\mathbf{z})}$ where G and H are co-prime polynomials with $H(\mathbf{0}) \neq 0$.
. $F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}:$ The Taylor expansion of F centered at the origin with a nonempty open domain of convergence $\mathscr{D} \subset \mathbb{C}^{n}$.
- Define Abs: $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left|z_{1} \cdots z_{n}\right|$
- We are interested in critical points of Abs
- $\mathscr{V}:=\left\{\mathbf{z} \in \mathbb{C}^{n} \mid H(\mathbf{z})=0\right\}$: the singular variety of $F=\frac{G}{H}$
- The critical points for Abs on \mathscr{V} are obtained by solving a polynomial system
coefficients of $\left(f_{\mathbf{i}}\right)_{\mathbf{i}}$.
- $H(\mathbf{z})=0, \quad z_{1} \frac{\partial H}{\partial z_{1}}=\cdots=z_{n} \frac{\partial H}{\partial z_{n}}$ (critical-point equations)
- We assume that all critical points are smooth.
- Especially, we are interested in minimal critical points
- It is important to find where the singularity locates.
(i.e. critical points lie in $\partial \mathscr{D} \cap \mathscr{V}$).

ACSV + Numerical algebraic geometry (how to construct a system of equations)

- $F(\mathbf{z})=\frac{G(\mathbf{z})}{H(\mathbf{z})}$ where G and H are co-prime
- Define Abs: $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left|z_{1} \cdots z_{n}\right|$
polynomials with $H(\mathbf{0}) \neq 0$.
. $F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: The Taylor expansion of F centered at the origin with a nonempty open domain of convergence $\mathscr{D} \subset \mathbb{C}^{n}$.
- Interested in computing the asymptotic behavior of coefficients of $\left(f_{\mathbf{i}}\right)_{\mathbf{i}}$.
- We are interested in critical points of Abs
- $\mathscr{V}:=\left\{\mathbf{z} \in \mathbb{C}^{n} \mid H(\mathbf{z})=0\right\}$: the singular variety of $F=\frac{G}{H}$
- The critical points for Abs on \mathscr{V} are obtained by solving a polynomial system
. $H(\mathbb{Z})=0, \quad z_{1} \frac{\partial H}{\partial z_{1}}=\cdots=z_{n} \frac{\partial H}{\partial z_{n}}$ (critical-point equations)
- We assume that all critical points are smooth.
- Especially, we are interested in minimal critical points

ACSV + Numerical algebraic geometry (how to construct a system of equations)

- $F(\mathbf{z})=\frac{G(\mathbf{z})}{H(\mathbf{z})}$ where G and H are co-prime
- Define Abs: $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left|z_{1} \cdots z_{n}\right|$
polynomials with $H(\mathbf{0}) \neq 0$.
- We are interested in critical points of Abs
. $F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}:$ The Taylor expansion of F centered at the origin with a nonempty open domain of convergence $\mathscr{D} \subset \mathbb{C}^{n}$.
- Interested in computing the asymptotic behavior of coefficients of $\left(f_{\mathbf{i}}\right)_{\mathbf{i}}$.

$$
f_{i_{1}, \ldots, i_{n}}=\frac{1}{(2 \pi i)^{n}} \int_{\gamma} \frac{F(\mathbf{z})}{z_{1}^{i_{1} \cdots z_{n}^{i_{n}}}} \cdot \frac{d z_{1} \cdots d z_{n}}{z_{1} \cdots z_{n}}
$$

- $\mathscr{V}:=\left\{\mathbf{z} \in \mathbb{C}^{n} \mid H(\mathbf{z})=0\right\}$: the singular variety of $F=\frac{G}{H}$
- The critical points for Abs on \mathscr{V} are obtained by solving a polynomial system
. $H(\mathbf{z})=0, \quad z_{1} \frac{\partial H}{\partial z_{1}}=\cdots=z_{n} \frac{\partial H}{\partial z_{n}}$ (critical-point equations)
- We assume that all critical points are smooth.
- Especially, we are interested in minimal critical points
(i.e. critical points lie in $\partial \mathscr{D} \cap \mathscr{V}$).

ACSV + Numerical algebraic geometry (how to construct a system of equations)

- $F(\mathbf{z})=\frac{G(\mathbf{z})}{H(\mathbf{z})}$ where G and H are co-prime
- Define Abs: $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left|z_{1} \cdots z_{n}\right|$
polynomials with $H(\mathbf{0}) \neq 0$.
- We are interested in critical points of Abs
. $F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: The Taylor expansion of F centered at the origin with a nonempty open domain of convergence $\mathscr{D} \subset \mathbb{C}^{n}$.
- $\mathscr{V}:=\left\{\mathbf{z} \in \mathbb{C}^{n} \mid H(\mathbf{z})=0\right\}$: the singular variety of $F=\frac{G}{H}$
- The critical points for Abs on \mathscr{V} are obtained by solving a polynomial system
- Interested in computing the asymptotic behavior of coefficients of $\left(f_{\mathbf{i}}\right)_{\mathbf{i}}$.

$$
f_{i_{1}, \ldots, i_{n}}=\frac{1}{(2 \pi i)^{n}} \int_{\gamma} \frac{F(\mathbf{z})}{z_{1}^{i_{1} \cdots z_{n}^{i_{n}}}} \cdot \frac{d z_{1} \ldots d z_{n}}{z_{1} \cdots z_{n}}
$$

- It is important to find where the singularity locates.

ACSV + Numerical algebraic geometry (how to construct a system of equations)

- $F(\mathbf{z})=\frac{G(\mathbf{z})}{H(\mathbf{z})}$ where G and H are co-prime polynomials with $H(\mathbf{0}) \neq 0$.
. $F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}:$ The Taylor expansion of F centered at the origin with a nonempty open domain of convergence $\mathscr{D} \subset \mathbb{C}^{n}$.
- Interested in computing the asymptotic behavior of coefficients of $\left(f_{\mathbf{i}}\right)_{\mathbf{i}}$.

$$
f_{i_{1}, \ldots, i_{n}}=\frac{1}{(2 \pi i)^{n}} \int_{\gamma} \frac{F(\mathbf{z})}{z_{1}^{i_{1} \cdots z_{n}^{i_{n}}}} \cdot \frac{d z_{1} \cdots d z_{n}}{z_{1} \cdots z_{n}}
$$

- It is important to find where the singularity locates.
- Define Abs : $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left|z_{1} \cdots z_{n}\right|$.
- We are interested in critical points of Abs.
- $\mathscr{V}:=\left\{\mathbf{z} \in \mathbb{C}^{n} \mid H(\mathbf{z})=0\right\}$: the singular variety of $F=\frac{G}{H}$
- The critical points for Abs on \mathscr{V} are obtained by solving a polynomial system
- $H(\mathbb{z})=0$,

- We assume that all critical points are smooth.
- Especially, we are interested in minimal critical points
(i.e. critical points lie in $\partial \mathscr{D} \cap \mathscr{V}$).

ACSV + Numerical algebraic geometry (how to construct a system of equations)

- $F(\mathbf{z})=\frac{G(\mathbf{z})}{H(\mathbf{z})}$ where G and H are co-prime polynomials with $H(\mathbf{0}) \neq 0$.
- Define Abs : $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left|z_{1} \cdots z_{n}\right|$.
- We are interested in critical points of Abs.
- $\mathscr{V}:=\left\{\mathbf{z} \in \mathbb{C}^{n} \mid H(\mathbf{z})=0\right\}$: the singular variety of $F=\frac{G}{H}$
- The critical points for Abs on \mathscr{V} are obtained by solving a polynomial system
- $H(\mathbb{z})=0$,

$$
f_{i_{1}, \ldots, i_{n}}=\frac{1}{(2 \pi i)^{n}} \int_{\gamma} \frac{F(\mathbf{z})}{z_{1}^{i_{1} \cdots z_{n}^{i_{n}}}} \cdot \frac{d z_{1} \cdots d z_{n}}{z_{1} \cdots z_{n}}
$$

- We assume that all critical points are smooth.
- Especially, we are interested in minimal critical points
(i.e. critical points lie in $\partial \mathscr{D} \cap \mathscr{V}$).

ACSV + Numerical algebraic geometry (how to construct a system of equations)

- $F(\mathbf{z})=\frac{G(\mathbf{z})}{H(\mathbf{z})}$ where G and H are co-prime polynomials with $H(\mathbf{0}) \neq 0$.
. $F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}:$ The Taylor expansion of F centered at the origin with a nonempty open domain of convergence $\mathscr{D} \subset \mathbb{C}^{n}$.
- Interested in computing the asymptotic behavior of coefficients of $\left(f_{\mathbf{i}}\right)_{\mathbf{i}}$.

$$
f_{i_{1}, \ldots, i_{n}}=\frac{1}{(2 \pi i)^{n}} \int_{\gamma} \frac{F(\mathbf{z})}{z_{1}^{i_{1} \cdots z_{n}^{i_{n}}}} \cdot \frac{d z_{1} \ldots d z_{n}}{z_{1} \cdots z_{n}}
$$

- Define Abs : $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left|z_{1} \cdots z_{n}\right|$.
- We are interested in critical points of Abs.
- $\mathscr{V}:=\left\{\mathbf{z} \in \mathbb{C}^{n} \mid H(\mathbf{z})=0\right\}$: the singular variety of $F=\frac{G}{H}$
- The critical points for Abs on \mathscr{V} are obtained by solving a polynomial system
- $H(\mathbf{z})=0$,

- We assume that all critical points are smooth.
- Especially, we are interested in minimal critical points
(i.e. critical points lie in $\partial \mathscr{D} \cap \mathscr{V}$).
- It is important to find where the singularity locates.

ACSV + Numerical algebraic geometry (how to construct a system of equations)

- $F(\mathbf{z})=\frac{G(\mathbf{z})}{H(\mathbf{z})}$ where G and H are co-prime polynomials with $H(\mathbf{0}) \neq 0$.
. $F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}:$ The Taylor expansion of F centered at the origin with a nonempty open domain of convergence $\mathscr{D} \subset \mathbb{C}^{n}$.
- Interested in computing the asymptotic behavior of coefficients of $\left(f_{\mathbf{i}}\right)_{\mathbf{i}}$.

$$
f_{i_{1}, \ldots, i_{n}}=\frac{1}{(2 \pi i)^{n}} \int_{\gamma} \frac{F(\mathbf{z})}{z_{1}^{i_{1}} \cdots z_{n}^{i_{n}}} \cdot \frac{d z_{1} \cdots d z_{n}}{z_{1} \cdots z_{n}}
$$

- It is important to find where the singularity locates.
- Define Abs : $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left|z_{1} \cdots z_{n}\right|$.
- We are interested in critical points of Abs.
- $\mathscr{V}:=\left\{\mathbf{z} \in \mathbb{C}^{n} \mid H(\mathbf{z})=0\right\}$: the singular variety of $F=\frac{G}{H}$
- The critical points for Abs on \mathscr{V} are obtained by solving a polynomial system
. $H(\mathbf{z})=0, \quad z_{1} \frac{\partial H}{\partial z_{1}}=\cdots=z_{n} \frac{\partial H}{\partial z_{n}}$ (critical-point equations)
- We assume that all critical points are smooth.
- Especially, we are interested in minimal critical points
(i.e. critical points lie in $\partial \mathscr{D} \cap \mathscr{V}$).

ACSV + Numerical algebraic geometry (how to construct a system of equations)

- $F(\mathbf{z})=\frac{G(\mathbf{z})}{H(\mathbf{z})}$ where G and H are co-prime polynomials with $H(\mathbf{0}) \neq 0$.
. $F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}:$ The Taylor expansion of F centered at the origin with a nonempty open domain of convergence $\mathscr{D} \subset \mathbb{C}^{n}$.
- Interested in computing the asymptotic behavior of coefficients of $\left(f_{\mathbf{i}}\right)_{\mathbf{i}}$.

$$
f_{i_{1}, \ldots, i_{n}}=\frac{1}{(2 \pi i)^{n}} \int_{\gamma} \frac{F(\mathbf{z})}{z_{1}^{i_{1} \cdots z_{n}^{i_{n}}}} \cdot \frac{d z_{1} \ldots d z_{n}}{z_{1} \cdots z_{n}}
$$

- It is important to find where the singularity locates.
- Define Abs : $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left|z_{1} \cdots z_{n}\right|$.
- We are interested in critical points of Abs.
- $\mathscr{V}:=\left\{\mathbf{z} \in \mathbb{C}^{n} \mid H(\mathbf{z})=0\right\}$: the singular variety of $F=\frac{G}{H}$
- The critical points for Abs on \mathscr{V} are obtained by solving a polynomial system
. $H(\mathbf{z})=0, \quad z_{1} \frac{\partial H}{\partial z_{1}}=\cdots=z_{n} \frac{\partial H}{\partial z_{n}}$ (critical-point equations)
- We assume that all critical points are smooth
- Especially, we are interested in minimal critical points
(i.e. critical points lie in $\partial \mathscr{D} \cap \mathscr{V}$).

ACSV + Numerical algebraic geometry (how to construct a system of equations)

- $F(\mathbf{z})=\frac{G(\mathbf{z})}{H(\mathbf{z})}$ where G and H are co-prime polynomials with $H(\mathbf{0}) \neq 0$.
. $F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}:$ The Taylor expansion of F centered at the origin with a nonempty open domain of convergence $\mathscr{D} \subset \mathbb{C}^{n}$.
- Interested in computing the asymptotic behavior of coefficients of $\left(f_{\mathbf{i}}\right)_{\mathbf{i}}$.

$$
f_{i_{1}, \ldots, i_{n}}=\frac{1}{(2 \pi i)^{n}} \int_{\gamma} \frac{F(\mathbf{z})}{z_{1}^{i_{1} \cdots z_{n}^{i_{n}}}} \cdot \frac{d z_{1} \ldots d z_{n}}{z_{1} \cdots z_{n}}
$$

- It is important to find where the singularity locates.
- Define Abs : $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left|z_{1} \cdots z_{n}\right|$.
- We are interested in critical points of Abs.
- $\mathscr{V}:=\left\{\mathbf{z} \in \mathbb{C}^{n} \mid H(\mathbf{z})=0\right\}$: the singular variety of $F=\frac{G}{H}$
- The critical points for Abs on \mathscr{V} are obtained by solving a polynomial system
. $H(\mathbf{z})=0, \quad z_{1} \frac{\partial H}{\partial z_{1}}=\cdots=z_{n} \frac{\partial H}{\partial z_{n}}$ (critical-point equations)
- We assume that all critical points are smooth.
- Especially, we are interested in minimal critical points
(i.e. critical points lie in $\partial \mathscr{D} \cap \mathscr{V}$).

ACSV + Numerical algebraic geometry (how to construct a system of equations)

- $F(\mathbf{z})=\frac{G(\mathbf{z})}{H(\mathbf{z})}$ where G and H are co-prime polynomials with $H(\mathbf{0}) \neq 0$.
. $F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: The Taylor expansion of F centered at the origin with a nonempty open domain of convergence $\mathscr{D} \subset \mathbb{C}^{n}$.
- Interested in computing the asymptotic behavior of coefficients of $\left(f_{\mathbf{i}}\right)_{\mathbf{i}}$.

$$
f_{i_{1}, \ldots, i_{n}}=\frac{1}{(2 \pi i)^{n}} \int_{\gamma} \frac{F(\mathbf{z})}{z_{1}^{i_{1} \cdots z_{n}^{i_{n}}}} \cdot \frac{d z_{1} \cdots d z_{n}}{z_{1} \cdots z_{n}}
$$

- It is important to find where the singularity locates.
- Define Abs : $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left|z_{1} \cdots z_{n}\right|$.
- We are interested in critical points of Abs.
- $\mathscr{V}:=\left\{\mathbf{z} \in \mathbb{C}^{n} \mid H(\mathbf{z})=0\right\}$: the singular variety of $F=\frac{G}{H}$
- The critical points for Abs on \mathscr{V} are obtained by solving a polynomial system
. $H(\mathbf{z})=0, \quad z_{1} \frac{\partial H}{\partial z_{1}}=\cdots=z_{n} \frac{\partial H}{\partial z_{n}}$ (critical-point equations)
- We assume that all critical points are smooth.
- Especially, we are interested in minimal critical points (i.e. critical points lie in $\partial \mathscr{D} \cap \mathscr{V}$).

ACSV for combinatorial case (Melczer-Salvy 2021)

$F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$ is called combinatorial if all coefficients
$f_{\mathbf{i}}$ of the Taylor expansion are non-negative.

ACSV for combinatorial case (Melczer-Salvy 2021)

$F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$ is called combinatorial if all coefficients
$f_{\mathbf{i}}$ of the Taylor expansion are non-negative.

1. Determine the set \mathcal{S} of zeros (\mathbf{z}, λ, t) of the system $\left[H, z_{1} \frac{\partial H}{\partial z_{1}}-\lambda, \ldots, z_{n} \frac{\partial H}{\partial z_{n}}-\lambda, H\left(t z_{1}, \ldots, t z_{n}\right)\right]$. If \mathcal{S} is not finite, then FAIL.
2. Construct the subset points $(\zeta, \lambda, t) \in \mathcal{S}$ which are
candidates for minimal critical points.

- \mathbf{Z} is minimal if and only if the line segment
$\left\{\left(t\left|z_{1}\right|, \ldots, t\left|z_{n}\right|\right) \mid 0<t<1\right\}$ doesn't intersect \mathscr{V}

3. Identify ζ among the elements of \mathscr{C} (critical points Abs on
4. Return
$\mathscr{U}:=\left\{\mathbf{z} \in \mathbb{C}^{n}| | z_{1}\left|=\left|\zeta_{1}\right|, \ldots,\left|z_{n}\right|=\left|\zeta_{n}\right|\right.\right.$ for some $\left.(\mathbf{z}, \lambda) \in \mathscr{C}\right\}$

ACSV for combinatorial case (Melczer-Salvy 2021)

$F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$ is called combinatorial if all coefficients $f_{\mathbf{i}}$ of the Taylor expansion are non-negative.

1. Determine the set \mathcal{S} of zeros (\mathbf{z}, λ, t) of the system $\left[H, z_{1} \frac{\partial H}{\partial z_{1}}-\lambda, \ldots, z_{n} \frac{\partial H}{\partial z_{n}}-\lambda, H\left(t z_{1}, \ldots, t z_{n}\right)\right]$. If \mathcal{S} is not finite, then FAIL.
2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in \mathcal{S}$ which are candidates for minimal critical points.

- \mathbf{z} is minimal if and only if the line segment $\left\{\left(t\left|z_{1}\right|, \ldots, t\left|z_{n}\right|\right) \mid 0<t<1\right\}$ doesn't intersect \mathscr{V}.

3. Identify ζ among the elements of \mathscr{C} (critical points Abs on
4. Return
$\mathscr{U}:=\left\{\mathbf{z} \in \mathbb{C}^{n}| | z_{1}\left|=\left|\zeta_{1}\right|, \ldots,\left|z_{n}\right|=\left|\zeta_{n}\right|\right.\right.$ for some $\left.(\mathbf{z}, \lambda) \in \mathscr{C}\right\}$

ACSV for combinatorial case (Melczer-Salvy 2021)

$F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$ is called combinatorial if all coefficients $f_{\mathbf{i}}$ of the Taylor expansion are non-negative.

1. Determine the set \mathcal{S} of zeros (\mathbf{z}, λ, t) of the system $\left[H, z_{1} \frac{\partial H}{\partial z_{1}}-\lambda, \ldots, z_{n} \frac{\partial H}{\partial z_{n}}-\lambda, H\left(t z_{1}, \ldots, t z_{n}\right)\right]$. If \mathcal{S} is not finite, then FAIL.
2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in \mathcal{S}$ which are candidates for minimal critical points.
$\cdot \mathbf{z}$ is minimal if and only if the line segment

$$
\left\{\left(t\left|z_{1}\right|, \ldots, t\left|z_{n}\right|\right) \mid 0<t<1\right\} \text { doesn't intersect } \mathscr{V} \text {. }
$$

3. Identify ζ among the elements of \mathscr{C} (critical points Abs on $\mathscr{V})$.
4. Return $\mathscr{U}:=\left\{\mathbf{z} \in \mathbb{C}^{n}| | z_{1}\left|=\left|\zeta_{1}\right|, \ldots,\left|z_{n}\right|=\left|\zeta_{n}\right|\right.\right.$ for some $\left.(\mathbf{z}, \lambda) \in \mathscr{C}\right\}$

ACSV for combinatorial case (Melczer-Salvy 2021)

$F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$ is called combinatorial if all coefficients $f_{\mathbf{i}}$ of the Taylor expansion are non-negative.

1. Determine the set \mathcal{S} of zeros (\mathbf{z}, λ, t) of the system $\left[H, \frac{\partial H}{} \frac{\partial H}{\partial z_{1}}-\lambda, \ldots, z_{n} \frac{\partial H}{\partial z_{n}}-\lambda, H\left(t z_{1}, \ldots, t z_{n}\right)\right]$. If \mathcal{S} is not finite, then FAlL.
2. Construct the subset points $(\zeta, \lambda, t) \in \mathcal{S}$ which are candidates for minimal critical points.

- \mathbf{z} is minimal if and only if the line segment

$$
\left\{\left(t\left|z_{1}\right|, \ldots, t\left|z_{n}\right|\right) \mid 0<t<1\right\} \text { doesn't intersect } \mathscr{V} \text {. }
$$

3. Identify ζ among the elements of \mathscr{C} (critical points Abs on $\mathscr{V})$.
4. Return
$\mathscr{U}:=\left\{\mathbf{z} \in \mathbb{C}^{n}| | z_{1}\left|=\left|\zeta_{1}\right|, \ldots,\left|z_{n}\right|=\left|\zeta_{n}\right|\right.\right.$ for some $\left.(\mathbf{z}, \lambda) \in \mathscr{C}\right\}$

ACSV for combinatorial case (Melczer-Salvy 2021)

$F(\mathbf{z})=\sum_{\mathbf{i} \in \mathbb{N}^{n}} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$ is called combinatorial if all coefficients $f_{\mathbf{i}}$ of the Taylor expansion are non-negative.

1. Determine the set \mathcal{S} of zeros (\mathbf{z}, λ, t) of the system $\left[H, z_{1} \frac{\partial H}{\partial z_{1}}-\lambda, \ldots, z_{n} \frac{\partial H}{\partial z_{n}}-\lambda, H\left(t z_{1}, \ldots, t z_{n}\right)\right]$. If \mathcal{S} is not finite, then FAIL.
2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in \mathcal{S}$ which are candidates for minimal critical points.
$-\mathbf{z}$ is minimal if and only if the line segment
$\quad\left\{\left(t\left|z_{1}\right|, \ldots, t\left|z_{n}\right|\right) \mid 0<t<1\right\}$ doesn't intersect \mathscr{V}.

Doesn't hold if F is not combinatorial

3. Identify ζ among the elements of \mathscr{C} (critical points Abs on \mathscr{V}).
4. Return
$\mathscr{U}:=\left\{\mathbf{z} \in \mathbb{C}^{n}| | z_{1}\left|=\left|\zeta_{1}\right|, \ldots,\left|z_{n}\right|=\left|\zeta_{n}\right|\right.\right.$ for some $\left.(\mathbf{z}, \lambda) \in \mathscr{C}\right\}$

ACSV for non-combinatorial case (Melczer-Salvy 2021)

Q. How to deal with non-combinatorial case?
equations are given as

Lemma (Melczer-Salvy 2021)
$H^{(R)}(\mathbf{a}, \mathbf{b})=H^{(I)}(\mathrm{a}, \mathrm{b})=0$

Let $D(\mathbb{z}):=\left\{\mathbf{w} \in \mathbb{C}^{n}| | w_{i}\left|<\left|z_{i}\right|, i=1, \ldots, n\right\}\right.$ be
$\mathbf{z} \in \partial \mathscr{D}$
Q. How to deal with polydisk using polynomial equations?
A. Decompose polynomials into the real and imaginary

Want to have no solutions with $\mathbf{x}, \mathbf{y}, t$ real and $0<t<1$
For checking extremity for values of t, we add equations

For derivatives, applying Cauchy-Riemann equations,

ACSV for non-combinatorial case (Melczer-Salvy 2021)

Using real and imaginary part decomposition, critical-point
Q. How to deal with non-combinatorial case?

Lemma (Melczer-Salvy 2021)
Let $D(\mathbf{z}):=\left\{\mathbf{w} \in \mathbb{C}^{n}| | w_{i}\left|<\left|z_{i}\right|, i=1, \ldots, n\right\}\right.$ be the open polydisk. If $\mathbf{z} \in \mathscr{V}$ and $\mathscr{V} \cap D(\mathbf{z})=\varnothing$, then $\mathbf{z} \in \partial \mathscr{D}$.
Q. How to deal with polydisk using polynomial equations?
A. Decompose polynomials into the real and imaginary part.
$f(\mathbf{x}+i \mathbf{y})=f^{(R)}(\mathbf{x}, \mathbf{y})+i f^{(I)}(\mathbf{x}, \mathbf{y})$
For derivatives, appluina Cauchu-Riemann equations
equations are given as

For checking emptiness of $\mathscr{V} \cap D(\mathbf{z})=\varnothing$, we consider
equations
$H^{(R)}(\mathbf{x}, \mathbf{y})=H^{(t)}(\mathbf{x}, \mathbf{y})=0$

Want to have no solutions with $\mathbf{x}, \mathbf{y}, t$ real and $0<t<1$
For checking extremity for values of t, we add equations

Want to have no solutions with $\mathbf{x}, \mathbf{y}, \nu, t$ real and
$0<t<1$

ACSV for non-combinatorial case (Melczer-Salvy 2021)

Q. How to deal with non-combinatorial case?

Lemma (Melczer-Salvy 2021)

Let $D(\mathbf{z}):=\left\{\mathbf{w} \in \mathbb{C}^{n}| | w_{i}\left|<\left|z_{i}\right|, i=1, \ldots, n\right\}\right.$ be the open polydisk. If $\mathbf{z} \in \mathscr{V}$ and $\mathscr{V} \cap D(\mathbf{z})=\varnothing$, then $\mathbf{z} \in \partial \mathscr{D}$.
Q. How to deal with polydisk using polynomial equations?
A. Decompose polynomials into the real and imaginary part.

Using real and imaginary part decomposition, critical-point
equations are given as

2. For checking emptiness of $\mathscr{V} \cap D(\mathbf{z})=\varnothing$, we consider equations

$$
H^{(R)}(\mathrm{x}, \mathrm{y})=H^{(T)}(\mathrm{x}, \mathrm{y})=0
$$

Want to have no solutions with $\mathbf{x}, \mathbf{y}, t$ real and $0<t<1$
For checking extremity for values of t, we add equations

Want to have no solutions with $\mathbf{x}, \mathbf{y}, \nu, t$ real and
$0<t<1$.

ACSV for non-combinatorial case (Melczer-Salvy 2021)

Q. How to deal with non-combinatorial case?

Lemma (Melczer-Salvy 2021)

Let $D(\mathbf{z}):=\left\{\mathbf{w} \in \mathbb{C}^{n}| | w_{i}\left|<\left|z_{i}\right|, i=1, \ldots, n\right\}\right.$ be the open polydisk. If $\mathbf{z} \in \mathscr{V}$ and $\mathscr{V} \cap D(\mathbf{z})=\varnothing$, then $\mathbf{z} \in \partial \mathscr{D}$.
Q. How to deal with polydisk using polynomial equations?
A. Decompose polynomials into the real and imaginary part.

Using real and imaginary part decomposition, critical-point
equations are given as

$$
H^{(R)}(\mathbf{a}, \mathbf{b})=H^{(I)}(\mathbf{a}, \mathbf{b})=0
$$

$a_{j} \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{R}=0$

. For checking emptiness of $\mathscr{V} \cap D(\mathbf{z})=\varnothing$, we consider equations

$$
H^{(R)}(\mathbf{x}, \mathbf{y})=H^{(I)}(\mathbf{x}, \mathbf{y})=0
$$

Want to have no solutions with $\mathbf{x}, \mathbf{y}, t$ real and $0<t<1$
3. For checking exiremity for values of t, we add equations

ACSV for non-combinatorial case (Melczer-Salvy 2021)

Q. How to deal with non-combinatorial case?

Lemma (Melczer-Salvy 2021)

Let $D(\mathbf{z}):=\left\{\mathbf{w} \in \mathbb{C}^{n}| | w_{i}\left|<\left|z_{i}\right|, i=1, \ldots, n\right\}\right.$ be the open polydisk. If $\mathbf{z} \in \mathscr{V}$ and $\mathscr{V} \cap D(\mathbf{z})=\varnothing$, then $\mathbf{z} \in \partial \mathscr{D}$.
Q. How to deal with polydisk using polynomial equations?
A. Decompose polynomials into the real and imaginary part.

$$
f(\mathbf{x}+i \mathbf{y})=f^{(R)}(\mathbf{x}, \mathbf{y})+i f^{(I)}(\mathbf{x}, \mathbf{y})
$$

For derivatives, applying Cauchy-Riemann equations,

Using real and imaginary part decomposition, critical-point
equations are given as

equations

$$
H^{(R)}(\mathrm{x}, \mathrm{y})=H^{(L)}(\mathrm{x}, \mathrm{y})=0
$$

Want to have no solutions with $\mathbf{x}, \mathbf{y}, t$ real and $0<t<1$

3. For checking extremity for values of t, we add equations

ACSV for non-combinatorial case (Melczer-Salvy 2021)

Q. How to deal with non-combinatorial case?

Lemma (Melczer-Salvy 2021)

Let $D(\mathbf{z}):=\left\{\mathbf{w} \in \mathbb{C}^{n}| | w_{i}\left|<\left|z_{i}\right|, i=1, \ldots, n\right\}\right.$ be the open polydisk. If $\mathbf{z} \in \mathscr{V}$ and $\mathscr{V} \cap D(\mathbf{z})=\varnothing$, then $\mathbf{z} \in \partial \mathscr{D}$.
Q. How to deal with polydisk using polynomial equations?
A. Decompose polynomials into the real and imaginary part.

$$
f(\mathbf{x}+i \mathbf{y})=f^{(R)}(\mathbf{x}, \mathbf{y})+i f^{(I)}(\mathbf{x}, \mathbf{y})
$$

For derivatives, applying Cauchy-Riemann equations,
$\frac{\partial f}{\partial z_{j}}(\mathbf{x}+i \mathbf{y})=\frac{1}{2} \cdot \frac{\partial}{\partial x_{j}}\left(f^{(R)}(\mathbf{x}, \mathbf{y})+i f^{(t)}(\mathbf{x}, \mathbf{y})\right)-\frac{i}{2} \cdot \frac{\partial}{\partial y_{j}}\left(f^{(R)}(\mathbf{x}, \mathbf{y})+i f^{(t)}(\mathbf{x}, \mathbf{y})\right)$

Using real and imaginary part decomposition, critical-point
equations are given as

equations

$$
H^{(R)}(\mathrm{x}, \mathrm{y})=H^{(t)}(\mathrm{x}, \mathrm{y})=0
$$

Want to have no solutions with $\mathbf{x}, \mathbf{y}, t$ real and $0<t<1$
3. For checking extremity for values of t, we add equations

Want to have no solutions with $\mathbf{x}, \mathbf{y}, \nu, t$ real and
$0<t<1$.

ACSV for non-combinatorial case (Melczer-Salvy 2021)

Q. How to deal with non-combinatorial case?

Lemma (Melczer-Salvy 2021)

Let $D(\mathbf{z}):=\left\{\mathbf{w} \in \mathbb{C}^{n}| | w_{i}\left|<\left|z_{i}\right|, i=1, \ldots, n\right\}\right.$ be the open polydisk. If $\mathbf{z} \in \mathscr{V}$ and $\mathscr{V} \cap D(\mathbf{z})=\varnothing$, then $\mathbf{z} \in \partial \mathscr{D}$.
Q. How to deal with polydisk using polynomial equations?
A. Decompose polynomials into the real and imaginary part.

$$
f(\mathbf{x}+i \mathbf{y})=f^{(R)}(\mathbf{x}, \mathbf{y})+i f^{(I)}(\mathbf{x}, \mathbf{y})
$$

For derivatives, applying Cauchy-Riemann equations,
$\frac{\partial f}{\partial z_{j}}(\mathbf{x}+i \mathbf{y})=\frac{1}{2} \cdot \frac{\partial}{\partial x_{j}}\left(f^{(R)}(\mathbf{x}, \mathbf{y})+i f^{(I)}(\mathbf{x}, \mathbf{y})\right)-\frac{i}{2} \cdot \frac{\partial}{\partial y_{j}}\left(f^{(R)}(\mathbf{x}, \mathbf{y})+i f^{(I)}(\mathbf{x}, \mathbf{y})\right)$

1. Using real and imaginary part decomposition, critical-point equations are given as

$$
\begin{array}{rl}
H^{(R)}(\mathbf{a}, \mathbf{b})=H^{(I)}(\mathbf{a}, \mathbf{b})=0 \\
a_{j} \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{R}=0 & j=1, \ldots, n \\
a_{j} \frac{\partial H^{(I)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(I)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{I}=0 & j=1, \ldots, n
\end{array}
$$

2. For checking emptiness of $\mathscr{V} \cap D(\mathbb{z})=\varnothing$, we consider equations

$$
H^{(R)}(\mathrm{x}, \mathrm{y})=H^{(I)}(\mathrm{x}, \mathrm{y})=0
$$

Want to have no solutions with $\mathbf{x}, \mathbf{y}, t$ real and $0<t<1$.
3. For checking extremity for values of t, we add equations

Want to have no solutions with $\mathbf{x}, \mathbf{y}, \nu, t$ real and
$0<t<1$.

ACSV for non-combinatorial case (Melczer-Salvy 2021)

Q. How to deal with non-combinatorial case?

Lemma (Melczer-Salvy 2021)

Let $D(\mathbf{z}):=\left\{\mathbf{w} \in \mathbb{C}^{n}| | w_{i}\left|<\left|z_{i}\right|, i=1, \ldots, n\right\}\right.$ be the open polydisk. If $\mathbf{z} \in \mathscr{V}$ and $\mathscr{V} \cap D(\mathbf{z})=\varnothing$, then $\mathbf{z} \in \partial \mathscr{D}$.
Q. How to deal with polydisk using polynomial equations?
A. Decompose polynomials into the real and imaginary part.

$$
f(\mathbf{x}+i \mathbf{y})=f^{(R)}(\mathbf{x}, \mathbf{y})+i f^{(I)}(\mathbf{x}, \mathbf{y})
$$

For derivatives, applying Cauchy-Riemann equations,
$\frac{\partial f}{\partial z_{j}}(\mathbf{x}+i \mathbf{y})=\frac{1}{2} \cdot \frac{\partial}{\partial x_{j}}\left(f^{(R)}(\mathbf{x}, \mathbf{y})+i f^{(I)}(\mathbf{x}, \mathbf{y})\right)-\frac{i}{2} \cdot \frac{\partial}{\partial y_{j}}\left(f^{(R)}(\mathbf{x}, \mathbf{y})+i f^{(I)}(\mathbf{x}, \mathbf{y})\right)$

1. Using real and imaginary part decomposition, critical-point equations are given as

$$
\begin{array}{rl}
H^{(R)}(\mathbf{a}, \mathbf{b})=H^{(I)}(\mathbf{a}, \mathbf{b})=0 \\
a_{j} \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{R}=0 & j=1, \ldots, n \\
a_{j} \frac{\partial H^{(I)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(I)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{I}=0 & j=1, \ldots, n
\end{array}
$$

2. For checking emptiness of $\mathscr{V} \cap D(\mathbf{z})=\varnothing$, we consider equations

$$
\begin{aligned}
H^{(R)}(\mathbf{x}, \mathbf{y})=H^{(I)}(\mathbf{x}, \mathbf{y}) & =0 \\
x_{j}^{2}+y_{j}^{2}-t\left(a_{j}^{2}+b_{j}^{2}\right) & =0 \quad j=1, \ldots, n
\end{aligned}
$$

Want to have no solutions with $\mathbf{x}, \mathbf{y}, t$ real and $0<t<1$.
3. For checking extremity for values of t, we add equations $\left(y_{j}-\nu x_{j}\right) \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{x}, \mathbf{y})-\left(x_{j}+\nu y_{j}\right) \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{x}, \mathbf{y})=0, \quad j=1, \ldots, n$ Want to have no solutions with $\mathbb{X}, \mathbb{y}, \nu, t$ real and $0<t<1$.

ACSV for non-combinatorial case (Melczer-Salvy 2021)

Q. How to deal with non-combinatorial case?

Lemma (Melczer-Salvy 2021)

Let $D(\mathbf{z}):=\left\{\mathbf{w} \in \mathbb{C}^{n}| | w_{i}\left|<\left|z_{i}\right|, i=1, \ldots, n\right\}\right.$ be the open polydisk. If $\mathbf{z} \in \mathscr{V}$ and $\mathscr{V} \cap D(\mathbf{z})=\varnothing$, then $\mathbf{z} \in \partial \mathscr{D}$.
Q. How to deal with polydisk using polynomial equations?
A. Decompose polynomials into the real and imaginary part.

$$
f(\mathbf{x}+i \mathbf{y})=f^{(R)}(\mathbf{x}, \mathbf{y})+i f^{(I)}(\mathbf{x}, \mathbf{y})
$$

For derivatives, applying Cauchy-Riemann equations,
$\frac{\partial f}{\partial z_{j}}(\mathbf{x}+i \mathbf{y})=\frac{1}{2} \cdot \frac{\partial}{\partial x_{j}}\left(f^{(R)}(\mathbf{x}, \mathbf{y})+i f^{(I)}(\mathbf{x}, \mathbf{y})\right)-\frac{i}{2} \cdot \frac{\partial}{\partial y_{j}}\left(f^{(R)}(\mathbf{x}, \mathbf{y})+i f^{(I)}(\mathbf{x}, \mathbf{y})\right)$

1. Using real and imaginary part decomposition, critical-point equations are given as

$$
\begin{aligned}
& H^{(R)}(\mathbf{a}, \mathbf{b})=H^{(I)}(\mathbf{a}, \mathbf{b})=0 \\
& a_{j} \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{R}=0 \quad j=1, \ldots, n \\
& a_{j} \frac{\partial H^{(I)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(I)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{I}=0 \quad j=1, \ldots, n
\end{aligned}
$$

2. For checking emptiness of $\mathscr{V} \cap D(\mathbf{z})=\varnothing$, we consider equations

$$
\begin{aligned}
H^{(R)}(\mathbf{x}, \mathbf{y})=H^{(I)}(\mathbf{x}, \mathbf{y}) & =0 \\
x_{j}^{2}+y_{j}^{2}-t\left(a_{j}^{2}+b_{j}^{2}\right) & =0 \quad j=1, \ldots, n
\end{aligned}
$$

Want to have no solutions with $\mathbf{x}, \mathbf{y}, t$ real and $0<t<1$.
3. For checking extremity for values of t, we add equations

$$
\left(y_{j}-\nu x_{j}\right) \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{x}, \mathbf{y})-\left(x_{j}+\nu y_{j}\right) \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{x}, \mathbf{y})=0, \quad j=1, \ldots, n
$$

Want to have no solutions with $\mathbf{x}, \mathbf{y}, \nu, t$ real and $0<t<1$.

ACSV for non-combinatorial case (Melczer-Salvy 2021)

$$
\left.\begin{array}{rrr}
H^{(R)}(\mathbf{a}, \mathbf{b})=H^{(I)}(\mathbf{a}, \mathbf{b})=0 & \\
a_{j} \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{R}=0 & j=1, \ldots, n \\
a_{j} \frac{\partial H^{(I)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(I)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{I}=0 & j=1, \ldots, n \\
H^{(R)}(\mathbf{x}, \mathbf{y})=H^{(I)}(\mathbf{x}, \mathbf{y})=0 & \\
x_{j}^{2}+y_{j}^{2}-t\left(a_{j}^{2}+b_{j}^{2}\right)=0 & j=1, \ldots, n \\
\left(y_{j}-\nu x_{j}\right) \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{x}, \mathbf{y})-\left(x_{j}+\nu y_{j}\right) \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{x}, \mathbf{y})=0 & j=1, \ldots, n
\end{array}\right\}
$$

(\star) is a square polynomial system with $4 n+4$ variables $\left(\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \lambda_{R}, \lambda_{I}, \nu, t\right)$.

ACSV for combinatorial case

1. Determine the set \mathcal{S} of zeros ($\mathbf{z}, \lambda, t)$ of the system $\left[H, z_{1} \frac{\partial H}{\partial z_{1}}-\lambda, \ldots, z_{n} \frac{\partial H}{\partial z_{n}}-\lambda, H\left(t z_{1}, \ldots, t z_{n}\right)\right]$. If \mathcal{S} is not finite, then FAIL.
2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in \mathcal{S}$ which are candidates for minimal critical points.

- \mathbf{z} is minimal if and only if the line segment $\left\{\left(t\left|z_{1}\right|, \ldots, t\left|z_{n}\right|\right) \mid 0<t<1\right\}$ doesn't intersect \mathscr{V}.

3. Identify $\boldsymbol{\zeta}$ among the elements of \mathscr{C} (critical points Abs on \mathscr{V}).
4. Return
$\mathscr{U}:=\left\{\mathbf{z} \in \mathbb{C}^{n}| | z_{1}\left|=\left|\zeta_{1}\right|, \ldots,\left|z_{n}\right|=\left|\zeta_{n}\right|\right.\right.$ for some $\left.(\mathbf{z}, \lambda) \in \mathscr{C}\right\}$

ACSV for non-combinatorial case

Determine the set \mathcal{S} of zeros
($\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \lambda_{R}, \lambda_{r}, \nu, t$) of the system (*). If δ is not finite, then FAIL.

Construct the set of minimal critical points $\mathscr{U}:=\left\{\mathbf{a}+i \mathbf{b} \mid\left(\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \lambda_{R}, \lambda_{I}, \nu, t\right) \in \mathcal{S}_{\mathbb{R}}, t \notin(0,1)\right\} \subset \delta$
3. If $\mathscr{U}=\varnothing$ or $\lambda_{R}=\lambda_{I}=0$ or the elements of \mathscr{U} do not all belong to the same torus, then FAIL
4. Identify elements of \mathscr{U} from \mathscr{C} and return them

ACSV for combinatorial case

1. Determine the set \mathcal{S} of zeros ($\mathbf{z}, \lambda, t)$ of the system $\left[H, z_{1} \frac{\partial H}{\partial z_{1}}-\lambda, \ldots, z_{n} \frac{\partial H}{\partial z_{n}}-\lambda, H\left(t z_{1}, \ldots, t z_{n}\right)\right]$. If \mathcal{S} is not finite, then FAIL.
2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in \mathcal{S}$ which are candidates for minimal critical points.

- \mathbf{z} is minimal if and only if the line segment $\left\{\left(t\left|z_{1}\right|, \ldots, t\left|z_{n}\right|\right) \mid 0<t<1\right\}$ doesn't intersect \mathscr{V}.

3. Identify $\boldsymbol{\zeta}$ among the elements of \mathscr{C} (critical points Abs on \mathscr{V}).
4. Return
$\mathscr{U}:=\left\{\mathbf{z} \in \mathbb{C}^{n}| | z_{1}\left|=\left|\zeta_{1}\right|, \ldots,\left|z_{n}\right|=\left|\zeta_{n}\right|\right.\right.$ for some $\left.(\mathbf{z}, \lambda) \in \mathscr{C}\right\}$

ACSV for non-combinatorial case

1. Determine the set \mathcal{S} of zeros
($\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \lambda_{R}, \lambda_{I}, \nu, t$) of the system (\star). If \mathcal{S} is not finite, then FAIL.
2. Construct the set of minimal critical points $\mathscr{U}:=\left\{\mathbf{a}+i \mathbf{b} \mid\left(\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \lambda_{R}, \lambda_{I}, \nu, t\right) \in \mathcal{S}_{\mathbb{R}}, t \notin(0,1)\right\} \subset \delta$
3. If $\mathscr{U}=\varnothing$ or $\lambda_{R}=\lambda_{I}=0$ or the elements of \mathscr{U} do not all belong to the same torus, then FAIL
4. Identify elements of \mathscr{U} from \mathscr{C} and return them.

ACSV for combinatorial case

1. Determine the set \mathcal{S} of zeros ($\mathbf{z}, \lambda, t)$ of the system $\left[H, z_{1} \frac{\partial H}{\partial z_{1}}-\lambda, \ldots, z_{n} \frac{\partial H}{\partial z_{n}}-\lambda, H\left(t z_{1}, \ldots, t z_{n}\right)\right]$. If \mathcal{S} is not finite, then FAIL.
2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in \mathcal{S}$ which are candidates for minimal critical points.

- \mathbf{z} is minimal if and only if the line segment $\left\{\left(t\left|z_{1}\right|, \ldots, t\left|z_{n}\right|\right) \mid 0<t<1\right\}$ doesn't intersect \mathscr{V}.

3. Identify $\boldsymbol{\zeta}$ among the elements of \mathscr{C} (critical points Abs on \mathscr{V}).
4. Return
$\mathscr{U}:=\left\{\mathbf{z} \in \mathbb{C}^{n}| | z_{1}\left|=\left|\zeta_{1}\right|, \ldots,\left|z_{n}\right|=\left|\zeta_{n}\right|\right.\right.$ for some $\left.(\mathbf{z}, \lambda) \in \mathscr{C}\right\}$

ACSV for non-combinatorial case

1. Determine the set \mathcal{S} of zeros
$\left(\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \lambda_{R}, \lambda_{I}, \nu, t\right)$ of the system (\star). If \mathcal{S} is not finite, then FAIL.
2. Construct the set of minimal critical points $\mathscr{U}:=\left\{\mathbf{a}+i \mathbf{b} \mid\left(\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \lambda_{R}, \lambda_{I}, \nu, t\right) \in \mathcal{S}_{\mathbb{R}}, t \notin(0,1)\right\} \subset \mathcal{\delta}$
3. If $\mathscr{U}=\varnothing$ or $\lambda_{R}=\lambda_{I}=0$ or the elements of \mathscr{U} do not all belong to the same torus, then FAIL.
4. Identify elements of \mathscr{U} from \mathscr{C} and return them.

ACSV for combinatorial case

1. Determine the set \mathcal{S} of zeros (\mathbf{z}, λ, t) of the system $\left[H, z_{1} \frac{\partial H}{\partial z_{1}}-\lambda, \ldots, z_{n} \frac{\partial H}{\partial z_{n}}-\lambda, H\left(t z_{1}, \ldots, t z_{n}\right)\right]$. If \mathcal{S} is not finite, then FAIL.
2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in \mathcal{S}$ which are candidates for minimal critical points.

- \mathbf{z} is minimal if and only if the line segment $\left\{\left(t\left|z_{1}\right|, \ldots, t\left|z_{n}\right|\right) \mid 0<t<1\right\}$ doesn't intersect \mathscr{V}.

3. Identify $\boldsymbol{\zeta}$ among the elements of \mathscr{C} (critical points Abs on \mathscr{V}).
4. Return
$\mathscr{U}:=\left\{\mathbf{z} \in \mathbb{C}^{n}| | z_{1}\left|=\left|\zeta_{1}\right|, \ldots,\left|z_{n}\right|=\left|\zeta_{n}\right|\right.\right.$ for some $\left.(\mathbf{z}, \lambda) \in \mathscr{C}\right\}$

ACSV for non-combinatorial case

1. Determine the set \mathcal{S} of zeros
($\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \lambda_{R}, \lambda_{I}, \nu, t$) of the system (\star). If \mathcal{S} is not finite, then FAIL.
2. Construct the set of minimal critical points $\mathscr{U}:=\left\{\mathbf{a}+i \mathbf{b} \mid\left(\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \lambda_{R}, \lambda_{l}, \nu, t\right) \in \mathcal{S}_{\mathbb{R}}, t \notin(0,1)\right\} \subset \mathcal{S}$
3. If $\mathscr{U}=\varnothing$ or $\lambda_{R}=\lambda_{I}=0$ or the elements of \mathscr{U} do not all belong to the same torus, then FAIL.
4. Identify elements of \mathscr{U} from \mathscr{C} and return them.

ACSV for combinatorial case

1. Determine the set \mathcal{S} of zeros (\mathbf{z}, λ, t) of the system $\left[H, z_{1} \frac{\partial H}{\partial z_{1}}-\lambda, \ldots, z_{n} \frac{\partial H}{\partial z_{n}}-\lambda, H\left(t z_{1}, \ldots, t z_{n}\right)\right]$. If \mathcal{S} is not finite, then FAIL.
2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in \mathcal{S}$ which are candidates for minimal critical points.

- \mathbf{z} is minimal if and only if the line segment $\left\{\left(t\left|z_{1}\right|, \ldots, t\left|z_{n}\right|\right) \mid 0<t<1\right\}$ doesn't intersect \mathscr{V}.

3. Identify $\boldsymbol{\zeta}$ among the elements of \mathscr{C} (critical points Abs on \mathscr{V}).
4. Return
$\mathscr{U}:=\left\{\mathbf{z} \in \mathbb{C}^{n}| | z_{1}\left|=\left|\zeta_{1}\right|, \ldots,\left|z_{n}\right|=\left|\zeta_{n}\right|\right.\right.$ for some $\left.(\mathbf{z}, \lambda) \in \mathscr{C}\right\}$

ACSV for non-combinatorial case

1. Determine the set \mathcal{S} of zeros
($\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \lambda_{R}, \lambda_{I}, \nu, t$) of the system (\star). If \mathcal{S} is not finite, then FAIL.
2. Construct the set of minimal critical points $\mathscr{U}:=\left\{\mathbf{a}+i \mathbf{b} \mid\left(\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \lambda_{R}, \lambda_{I}, \nu, t\right) \in \mathcal{S}_{\mathbb{R}}, t \notin(0,1)\right\} \subset \mathcal{S}$
3. If $\mathscr{U}=\varnothing$ or $\lambda_{R}=\lambda_{I}=0$ or the elements of \mathscr{U} do not all belong to the same torus, then FAIL.
4. Identify elements of \mathscr{U} from \mathscr{C} and return them.

ACSVHomotopy.jl (L.-Melczer-Smolčić 2022)

- Implemented using HomotopyContinuation.jl (Breiding-Timme 2018)
- Available at github.com/ACSVMath/ACSVHomotopy
- Competitive to other ACSV software for combinatorial cases.
- Solve the critical-point equations using the polyhedral homotopy
- The first software of ACSV for noncombinatorial cases.
- Solve the decomposed critical-point equations (\star) using the polyhedral homotopy
- Provide faster heuristics including the monodromy method.

Implementation details

The polyhedral homotopy is the default for solving critical point equations.

- Returns reliable results via interval arithmetic certification.
- Effective for combinatorial case compared to other software based on symbolic algorithm.
- May be slow for non-combinatorial.
- Faster heuristics used.

Implementation details

The polyhedral homotopy is the default for solving critical point equations.

- Returns reliable results via interval arithmetic certification.
- Effective for combinatorial case compared to other software based on symbolic algorithm.
- May be slow for non-combinatorial.
- Faster heuristics used.

Implementation details

Heuristics for non-combinatorial case.

$$
\left.\begin{array}{rrr}
H^{(R)}(\mathbf{a}, \mathbf{b})=H^{(I)}(\mathbf{a}, \mathbf{b})=0 & \\
a_{j} \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{R}=0 & j=1, \ldots, n \\
a_{j} \frac{\partial H^{(I)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(I)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{I}=0 & j=1, \ldots, n \\
H^{(R)}(\mathbf{x}, \mathbf{y})=H^{(I)}(\mathbf{x}, \mathbf{y})=0 & \\
x_{j}^{2}+y_{j}^{2}-t\left(a_{j}^{2}+b_{j}^{2}\right)=0 & j=1, \ldots, n \\
\left(y_{j}-\nu x_{j}\right) \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{x}, \mathbf{y})-\left(x_{j}+\nu y_{j}\right) \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{x}, \mathbf{y})=0 & j=1, \ldots, n
\end{array}\right\}
$$

Implementation details

Heuristics for non-combinatorial case.

$$
\left.\begin{array}{rr}
H^{(R)}(\mathbf{a}, \mathbf{b})=H^{(I)}(\mathbf{a}, \mathbf{b})=0 & \\
a_{j} \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{R}=0 & j=1, \ldots, n \\
a_{j} \frac{\partial H^{(I)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(I)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{I}=0 & j=1, \ldots, n \\
H^{(R)}(\mathbf{x}, \mathbf{y})=H^{(I)}(\mathbf{x}, \mathbf{y})=0 & \\
x_{j}^{2}+y_{j}^{2}-t\left(a_{j}^{2}+b_{j}^{2}\right)=0 & j=1, \ldots, n \\
\left(y_{j}-\nu x_{j}\right) \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{x}, \mathbf{y})-\left(x_{j}+\nu y_{j}\right) \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{x}, \mathbf{y})=0 & j=1, \ldots, n
\end{array}\right\} \quad(\star)
$$

1. Approximating critical points

Implementation details

Heuristics for non-combinatorial case.

$$
\left.\begin{array}{rr}
H^{(R)}(\mathbf{a}, \mathbf{b})=H^{(I)}(\mathbf{a}, \mathbf{b})=0 & \\
a_{j} \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{R}=0 & j=1, \ldots, n \\
a_{j} \frac{\partial H^{(I)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(I)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{I}=0 & j=1, \ldots, n \\
H^{(R)}(\mathbf{x}, \mathbf{y})=H^{(I)}(\mathbf{x}, \mathbf{y})=0 & \\
x_{j}^{2}+y_{j}^{2}-t\left(a_{j}^{2}+b_{j}^{2}\right)=0 & j=1, \ldots, n \\
\left(y_{j}-\nu x_{j}\right) \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{x}, \mathbf{y})-\left(x_{j}+\nu y_{j}\right) \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{x}, \mathbf{y})=0 & j=1, \ldots, n
\end{array}\right\}
$$

1. Approximating critical points

- Solve the subsystem (A) to get an approximation of (\mathbf{a}, \mathbf{b}).
- Using the approximations, solve the subsystem (B)

Implementation details

Heuristics for non-combinatorial case.

$$
\left.\begin{array}{rr}
H^{(R)}(\mathbf{a}, \mathbf{b})=H^{(I)}(\mathbf{a}, \mathbf{b})=0 & \\
a_{j} \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{R}=0 & j=1, \ldots, n \\
a_{j} \frac{\partial H^{(I)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(I)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{I}=0 & j=1, \ldots, n \\
H^{(R)}(\mathbf{x}, \mathbf{y})=H^{(I)}(\mathbf{x}, \mathbf{y})=0 & \\
x_{j}^{2}+y_{j}^{2}-t\left(a_{j}^{2}+b_{j}^{2}\right)=0 & j=1, \ldots, n \\
\left(y_{j}-\nu x_{j}\right) \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{x}, \mathbf{y})-\left(x_{j}+\nu y_{j}\right) \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{x}, \mathbf{y})=0 & j=1, \ldots, n
\end{array}\right\}
$$

1. Approximating critical points

- Solve the subsystem (A) to get an approximation of (\mathbf{a}, \mathbf{b}).
- Using the approximations, solve
the subsystem (B).

Implementation details

Heuristics for non-combinatorial case.

$$
\left.\begin{array}{rr}
H^{(R)}(\mathbf{a}, \mathbf{b})=H^{(I)}(\mathbf{a}, \mathbf{b})=0 & \\
a_{j} \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{R}=0 & j=1, \ldots, n \\
a_{j} \frac{\partial H^{(I)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(I)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{I}=0 & j=1, \ldots, n \\
H^{(R)}(\mathbf{x}, \mathbf{y})=H^{(I)}(\mathbf{x}, \mathbf{y})=0 & \\
x_{j}^{2}+y_{j}^{2}-t\left(a_{j}^{2}+b_{j}^{2}\right)=0 & j=1, \ldots, n \\
\left(y_{j}-\nu x_{j}\right) \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{x}, \mathbf{y})-\left(x_{j}+\nu y_{j}\right) \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{x}, \mathbf{y})=0 & j=1, \ldots, n
\end{array}\right\}
$$

1. Approximating critical points

- Solve the subsystem (A) to get an approximation of (\mathbf{a}, \mathbf{b}).
- Using the approximations, solve the subsystem (B).

Implementation details

Heuristics for non-combinatorial case.

$$
\left.\begin{array}{rr}
H^{(R)}(\mathbf{a}, \mathbf{b})=H^{(I)}(\mathbf{a}, \mathbf{b})=0 & \\
a_{j} \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{R}=0 & j=1, \ldots, n \\
a_{j} \frac{\partial H^{(I)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(I)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{I}=0 & j=1, \ldots, n \\
H^{(R)}(\mathbf{x}, \mathbf{y})=H^{(I)}(\mathbf{x}, \mathbf{y})=0 & \\
x_{j}^{2}+y_{j}^{2}-t\left(a_{j}^{2}+b_{j}^{2}\right)=0 & j=1, \ldots, n \\
\left(y_{j}-\nu x_{j}\right) \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{x}, \mathbf{y})-\left(x_{j}+\nu y_{j}\right) \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{x}, \mathbf{y})=0 & j=1, \ldots, n
\end{array}\right\}
$$

2. Monodromy

- Solve the subsystem (A) to get an approximation of (\mathbf{a}, \mathbf{b}).
- Solve the subsystem (B) using monodromy with $(\mathbf{x}, \mathbf{y}, t)=(\mathbf{a}, \mathbf{b}, 1)$.
- Caveat: the subsystem (B) may have several irreducible components. (Fail to find all critical points)

Implementation details

Heuristics for non-combinatorial case.

$$
\left.\begin{array}{rr}
H^{(R)}(\mathbf{a}, \mathbf{b})=H^{(I)}(\mathbf{a}, \mathbf{b})=0 & \\
a_{j} \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{R}=0 & j=1, \ldots, n \\
a_{j} \frac{\partial H^{(I)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(I)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{I}=0 & j=1, \ldots, n \\
H^{(R)}(\mathbf{x}, \mathbf{y})=H^{(I)}(\mathbf{x}, \mathbf{y})=0 & \\
x_{j}^{2}+y_{j}^{2}-t\left(a_{j}^{2}+b_{j}^{2}\right)=0 & j=1, \ldots, n \\
\left(y_{j}-\nu x_{j}\right) \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{x}, \mathbf{y})-\left(x_{j}+\nu y_{j}\right) \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{x}, \mathbf{y})=0 & j=1, \ldots, n
\end{array}\right\}
$$

2. Monodromy

- Solve the subsystem (A) to get an approximation of (\mathbf{a}, \mathbf{b}).
- Solve the subsystem (B) using monodromy with $(\mathbf{x}, \mathbf{y}, t)=(\mathbf{a}, \mathbf{b}, 1)$.
- Caveat : the subsystem (B) may have several irreducible components. (Fail to find all critical points)

Implementation details

Heuristics for non-combinatorial case.

$$
\left.\begin{array}{rr}
H^{(R)}(\mathbf{a}, \mathbf{b})=H^{(I)}(\mathbf{a}, \mathbf{b})=0 & \\
a_{j} \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{R}=0 & j=1, \ldots, n \\
a_{j} \frac{\partial H^{(I)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(I)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{I}=0 & j=1, \ldots, n \\
H^{(R)}(\mathbf{x}, \mathbf{y})=H^{(I)}(\mathbf{x}, \mathbf{y})=0 & \\
x_{j}^{2}+y_{j}^{2}-t\left(a_{j}^{2}+b_{j}^{2}\right)=0 & j=1, \ldots, n \\
\left(y_{j}-\nu x_{j}\right) \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{x}, \mathbf{y})-\left(x_{j}+\nu y_{j}\right) \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{x}, \mathbf{y})=0 & j=1, \ldots, n
\end{array}\right\}
$$

2. Monodromy

- Solve the subsystem (A) to get an approximation of (\mathbf{a}, \mathbf{b}).
- Solve the subsystem (B) using monodromy with $(\mathbf{x}, \mathbf{y}, t)=(\mathbf{a}, \mathbf{b}, 1)$.
- Caveat : the subsystem (B) may have several irreducible components. (Fail to find all critical points)

Experiments : Combinatorial examples

Examples	square-root	Apéry ((2)	Apéry そ(3)	Random	3D Walk
Elapsed time (s) ACSVHomotopy.jl	0.01	0.025	0.7	0.9	0.08
Maple implementation	0.06	0.06	0.3	840	2.7

Experiments : Non-combinatorial examples

Experiments: Combinatorial examples

Examples	square-root	Apéry $\zeta(\mathbf{2})$	Apéry $\zeta(\mathbf{3})$	Random	3D Walk
Elassed time (s) ACSVHomotopy.jl	0.01	0.025	0.7	0.9	0.08
Maple implementation	0.06	0.06	0.3	840	2.7

Experiments : Non-combinatorial examples

Elapsed time (s) Examples	square-root	Apéry 弓(2)	2D Walk	GRZ	Random
Polyhedral homotopy	29.5	670	INC	236	INC
Approximating Crits	0.72	3.8	15.3	3.6	189.4
Monodromy	14.9	8.5	31.9	3.8	583.1

Future directions

$$
\left.\begin{array}{rlr}
H^{(R)}(\mathbf{a}, \mathbf{b})=H^{(I)}(\mathbf{a}, \mathbf{b})=0 & \\
a_{j} \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{R}=0 & j=1, \ldots, n \\
a_{j} \frac{\partial H^{(I)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b})+b_{j} \frac{\partial H^{(I)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b})-\lambda_{I}=0 & j=1, \ldots, n \\
H^{(R)}(\mathbf{x}, \mathbf{y})=H^{(I)}(\mathbf{x}, \mathbf{y})=0 & \\
x_{j}^{2}+y_{j}^{2}-t\left(a_{j}^{2}+b_{j}^{2}\right)=0 & j=1, \ldots, n \\
\left(y_{j}-\nu x_{j}\right) \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{x}, \mathbf{y})-\left(x_{j}+\nu y_{j}\right) \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{x}, \mathbf{y})=0 & j=1, \ldots, n
\end{array}\right\}
$$

- Geometric understanding of (\star)
- What is degree for generic H ?
- Numerical techniques for (\star)
- How to improve the performance of monodromy?
- Solving equation-by-equation (i.e. regeneration)
- How to verify the completeness?

Thank you for your attention

The paper is available at
(https://arxiv.org/pdf/2208.04490.pdf)

