Homotopy techniques for analytic combinatorics in several variables

(joint work with Stephen Melczer[†] and Josip Smolčić[†])

University of Waterloo

Kisun Lee (UC San Diego) - kisunlee@ucsd.edu Joint Mathematics Meetings 2023 - AMS Special Session on Applied Enumerative Geometry

Acknowledgements

This work was started and supported in the AMS Math Research Community 2021 Combinatorial Applications of Computational Geometry and Algebraic Topology

 $(f_n) = f_1, f_2, \dots$: a sequence of complex numbers.

 $F(z) = \sum_{i=1}^{\infty} f_i \ z^i$: **the generating function** of the sequence.

- The generating function can be considered as the power series expansion of a complex valued function.
- **Q.** Can we study the asymptotic behavior of (f_n) using the (analytic) behavior of F?

• (Cauchy integral formula).
$$f_n = \frac{1}{2\pi i} \int_{\gamma} F(z) \frac{dz}{z^{n+1}}$$

Analytic combinatorics in several variables

- Specifically, the **r**-diagonal sequence $(f_{n\mathbf{r}})$ for any $\mathbf{r} \in \mathbb{R}^n$ is considered.
- The common situation to arise in practice is the main-diagonal ${f r}=1$. Ex) (Furstenberg 1967), (Christol 1984), (Chudnovsky-Chudnovsky 1985), (André 2000)
- Applications : Lattice path enumeration, random walks, and so on.

$$(f_n) = f_1, f_2, \dots$$
: a sequence of complex numbers.

$$F(z) = \sum_{i=1}^{\infty} f_i \ z^i$$
: **the generating function** of the sequence.

- The generating function can be considered as the power series expansion of a complex valued function.
- **Q.** Can we study the asymptotic behavior of (f_n) using the (analytic) behavior of F?

• (Cauchy integral formula).
$$f_n = \frac{1}{2\pi i} \int_{\gamma} F(z) \frac{dz}{z^{n+1}}$$

Analytic combinatorics in several variables

- Specifically, the **r**-diagonal sequence $(f_{n\mathbf{r}})$ for any $\mathbf{r} \in \mathbb{R}^n$ is considered.
- The common situation to arise in practice is the main-diagonal ${f r}=1$. Ex) (Furstenberg 1967), (Christol 1984), (Chudnovsky-Chudnovsky 1985), (André 2000)
- Applications : Lattice path enumeration, random walks, and so on.

$$(f_n) = f_1, f_2, \dots$$
: a sequence of complex numbers.

$$F(z) = \sum_{i=1}^{\infty} f_i \ z^i$$
: **the generating function** of the sequence.

- The generating function can be considered as the power series expansion of a complex valued function.
- **Q.** Can we study the asymptotic behavior of (f_n) using the (analytic) behavior of F?

• (Cauchy integral formula).
$$f_n = \frac{1}{2\pi i} \int_{\gamma} F(z) \frac{dz}{z^{n+1}}$$

Analytic combinatorics in several variables

- Specifically, the **r**-diagonal sequence $(f_{n\mathbf{r}})$ for any $\mathbf{r} \in \mathbb{R}^n$ is considered.
- The common situation to arise in practice is the main-diagonal ${f r}=1$. Ex) (Furstenberg 1967), (Christol 1984), (Chudnovsky-Chudnovsky 1985), (André 2000)
- Applications : Lattice path enumeration, random walks, and so on.

$$(f_n) = f_1, f_2, \dots$$
 : a sequence of complex numbers.

$$F(z) = \sum_{i=1}^{\infty} f_i \ z^i$$
: **the generating function** of the sequence.

- The generating function can be considered as the power series expansion of a complex valued function.
- **Q.** Can we study the asymptotic behavior of (f_n) using the (analytic) behavior of F?

• (Cauchy integral formula).
$$f_n = \frac{1}{2\pi i} \int_{\gamma} F(z) \frac{dz}{z^{n+1}}$$

Analytic combinatorics in several variables

- Specifically, the **r**-diagonal sequence $(f_{n\mathbf{r}})$ for any $\mathbf{r} \in \mathbb{R}^n$ is considered.
- The common situation to arise in practice is the main-diagonal ${f r}=1$. Ex) (Furstenberg 1967), (Christol 1984), (Chudnovsky-Chudnovsky 1985), (André 2000)
- Applications : Lattice path enumeration, random walks, and so on.

$$(f_n) = f_1, f_2, \dots$$
: a sequence of complex numbers.

$$F(z) = \sum_{i=1}^{\infty} f_i \ z^i$$
: **the generating function** of the sequence.

- The generating function can be considered as the power series expansion of a complex valued function.
- **Q.** Can we study the asymptotic behavior of (f_n) using the (analytic) behavior of F?

(Cauchy integral formula).
$$f_n = \frac{1}{2\pi i} \int_{\gamma} F(z) \frac{dz}{z^{n+1}}$$

Analytic combinatorics in several variables

- Specifically, the **r**-diagonal sequence $(f_{n\mathbf{r}})$ for any $\mathbf{r} \in \mathbb{R}^n$ is considered.
- The common situation to arise in practice is the main-diagonal ${f r}=1$. Ex) (Furstenberg 1967), (Christol 1984), (Chudnovsky-Chudnovsky 1985), (André 2000)
- Applications : Lattice path enumeration, random walks, and so on.

$$(f_n) = f_1, f_2, \dots$$
: a sequence of complex numbers.

$$F(z) = \sum_{i=1}^{\infty} f_i \ z^i$$
: **the generating function** of the sequence.

- The generating function can be considered as the power series expansion of a complex valued function.
- **Q.** Can we study the asymptotic behavior of (f_n) using the (analytic) behavior of F?

(Cauchy integral formula).
$$f_n = \frac{1}{2\pi i} \int_{\gamma} F(z) \frac{dz}{z^{n+1}}$$

Analytic combinatorics in several variables

- Specifically, the **r**-diagonal sequence $(f_{n\mathbf{r}})$ for any $\mathbf{r} \in \mathbb{R}^n$ is considered.
- The common situation to arise in practice is the main-diagonal ${f r}=1$. Ex) (Furstenberg 1967), (Christol 1984), (Chudnovsky-Chudnovsky 1985), (André 2000)
- Applications : Lattice path enumeration, random walks, and so on.

$$(f_n) = f_1, f_2, \dots$$
: a sequence of complex numbers.

$$F(z) = \sum_{i=1}^{\infty} f_i \ z^i$$
: **the generating function** of the sequence.

- The generating function can be considered as the power series expansion of a complex valued function.
- **Q.** Can we study the asymptotic behavior of (f_n) using the (analytic) behavior of F?

(Cauchy integral formula).
$$f_n = \frac{1}{2\pi i} \int_{\gamma} F(z) \frac{dz}{z^{n+1}}$$

Analytic combinatorics in several variables

- Specifically, the **r**-diagonal sequence $(f_{n\mathbf{r}})$ for any $\mathbf{r} \in \mathbb{R}^n$ is considered.
- The common situation to arise in practice is the main-diagonal $\mathbf{r}=\mathbf{1}$. Ex) (Furstenberg 1967), (Christol 1984), (Chudnovsky-Chudnovsky 1985), (André 2000)
- Applications : Lattice path enumeration, random walks, and so on.

$$(f_n) = f_1, f_2, \dots$$
: a sequence of complex numbers.

$$F(z) = \sum_{i=1}^{\infty} f_i \ z^i$$
: **the generating function** of the sequence.

- The generating function can be considered as the power series expansion of a complex valued function.
- **Q.** Can we study the asymptotic behavior of (f_n) using the (analytic) behavior of F?

(Cauchy integral formula).
$$f_n = \frac{1}{2\pi i} \int_{\gamma} F(z) \frac{dz}{z^{n+1}}$$

Analytic combinatorics in several variables

- Specifically, the **r**-diagonal sequence $(f_{n\mathbf{r}})$ for any $\mathbf{r} \in \mathbb{R}^n$ is considered.
- The common situation to arise in practice is the main-diagonal ${f r}=1$. Ex) (Furstenberg 1967), (Christol 1984), (Chudnovsky-Chudnovsky 1985), (André 2000)
- Applications : Lattice path enumeration, random walks, and so on.

$$(f_n) = f_1, f_2, \dots$$
: a sequence of complex numbers.

$$F(z) = \sum_{i=1}^{\infty} f_i \ z^i$$
: **the generating function** of the sequence.

- The generating function can be considered as the power series expansion of a complex valued function.
- **Q.** Can we study the asymptotic behavior of (f_n) using the (analytic) behavior of F?

(Cauchy integral formula).
$$f_n = \frac{1}{2\pi i} \int_{\gamma} F(z) \frac{dz}{z^{n+1}}$$

Analytic combinatorics in several variables

- Specifically, the **r**-diagonal sequence $(f_{n\mathbf{r}})$ for any $\mathbf{r} \in \mathbb{R}^n$ is considered.
- The common situation to arise in practice is the main-diagonal ${f r}=1$. Ex) (Furstenberg 1967), (Christol 1984), (Chudnovsky-Chudnovsky 1985), (André 2000)
- Applications : Lattice path enumeration, random walks, and so on.

ACSV + Numerical algebraic geometry

ACSV + Numerical algebraic geometry (Need a system of equations)

•
$$F(\mathbf{z}) = \frac{G(\mathbf{z})}{H(\mathbf{z})}$$
 where G and H are co-prime

polynomials with $H(\mathbf{0}) \neq 0$.

- $F(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{N}^n} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: The Taylor expansion of Fcentered at the origin with a nonempty open domain of convergence $\mathcal{D} \subset \mathbb{C}^n$.
- Interested in computing the asymptotic behavior of coefficients of $(f_i)_i$.

$$f_{i_1,\ldots,i_n} = \frac{1}{(2\pi i)^n} \int_{\gamma} \frac{F(\mathbf{z})}{z_1^{i_1}\cdots z_n^{i_n}} \cdot \frac{dz_1 \dots dz_n}{z_1 \cdots z_n}$$

- Define Abs : $(z_1, \ldots, z_n) \mapsto |z_1 \cdots z_n|$.
- We are interested in critical points of Abs.
- $\mathscr{V} := \{ \mathbf{z} \in \mathbb{C}^n \mid H(\mathbf{z}) = 0 \}$: the singular variety of $F = \frac{G}{H}$
- The critical points for Abs on ${\mathcal V}$ are obtained by solving a polynomial system
- $H(\mathbf{z}) = 0$, $z_1 \frac{\partial H}{\partial z_1} = \cdots = z_n \frac{\partial H}{\partial z_n}$ (critical-point equations)
- We assume that all critical points are smooth.
- Especially, we are interested in **minimal** critical points (i.e. critical points lie in $\partial \mathcal{D} \cap \mathcal{V}$).

•
$$F(\mathbf{z}) = \frac{G(\mathbf{z})}{H(\mathbf{z})}$$
 where G and H are co-prime

polynomials with $H(\mathbf{0}) \neq 0$.

- $F(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{N}^n} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: The Taylor expansion of Fcentered at the origin with a nonempty open domain of convergence $\mathcal{D} \subset \mathbb{C}^n$.
- Interested in computing the asymptotic behavior of coefficients of $(f_i)_i$.

$$f_{i_1,\ldots,i_n} = \frac{1}{(2\pi i)^n} \int_{\gamma} \frac{F(\mathbf{z})}{z_1^{i_1}\cdots z_n^{i_n}} \cdot \frac{dz_1 \dots dz_n}{z_1 \cdots z_n}$$

- Define Abs : $(z_1, \ldots, z_n) \mapsto |z_1 \cdots z_n|$.
- We are interested in critical points of Abs.
- $\mathscr{V} := \{ \mathbf{z} \in \mathbb{C}^n \mid H(\mathbf{z}) = 0 \}$: the singular variety of $F = \frac{G}{H}$
- The critical points for Abs on ${\mathcal V}$ are obtained by solving a polynomial system
- $H(\mathbf{z}) = 0$, $z_1 \frac{\partial H}{\partial z_1} = \cdots = z_n \frac{\partial H}{\partial z_n}$ (critical-point equations)
- We assume that all critical points are smooth.
- Especially, we are interested in **minimal** critical points (i.e. critical points lie in $\partial \mathcal{D} \cap \mathcal{V}$).

•
$$F(\mathbf{z}) = \frac{G(\mathbf{z})}{H(\mathbf{z})}$$
 where G and H are co-prime

polynomials with $H(\mathbf{0}) \neq 0$.

- $F(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{N}^n} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: The Taylor expansion of Fcentered at the origin with a nonempty open domain of convergence $\mathcal{D} \subset \mathbb{C}^n$.
- Interested in computing the asymptotic behavior of coefficients of $(f_i)_i$.

$$f_{i_1,\ldots,i_n} = \frac{1}{(2\pi i)^n} \int_{\gamma} \frac{F(\mathbf{z})}{z_1^{i_1}\cdots z_n^{i_n}} \cdot \frac{dz_1 \dots dz_n}{z_1 \cdots z_n}$$

- Define Abs : $(z_1, \ldots, z_n) \mapsto |z_1 \cdots z_n|$.
- We are interested in critical points of Abs.
- $\mathscr{V} := \{ \mathbf{z} \in \mathbb{C}^n \mid H(\mathbf{z}) = 0 \}$: the singular variety of $F = \frac{G}{H}$
- The critical points for Abs on ${\mathcal V}$ are obtained by solving a polynomial system
- $H(\mathbf{z}) = 0$, $z_1 \frac{\partial H}{\partial z_1} = \cdots = z_n \frac{\partial H}{\partial z_n}$ (critical-point equations)
- We assume that all critical points are smooth.
- Especially, we are interested in **minimal** critical points (i.e. critical points lie in $\partial \mathcal{D} \cap \mathcal{V}$).

•
$$F(\mathbf{z}) = \frac{G(\mathbf{z})}{H(\mathbf{z})}$$
 where G and H are co-prime

polynomials with $H(\mathbf{0}) \neq 0$.

- $F(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{N}^n} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: The Taylor expansion of Fcentered at the origin with a nonempty open domain of convergence $\mathcal{D} \subset \mathbb{C}^n$.
- Interested in computing the asymptotic behavior of coefficients of $(f_{\mathbf{i}})_{\mathbf{i}}$.

$$f_{i_1,\ldots,i_n} = \frac{1}{(2\pi i)^n} \int_{\gamma} \frac{F(\mathbf{z})}{z_1^{i_1}\cdots z_n^{i_n}} \cdot \frac{dz_1 \dots dz_n}{z_1 \cdots z_n}$$

- Define Abs : $(z_1, \ldots, z_n) \mapsto |z_1 \cdots z_n|$.
- We are interested in critical points of Abs.
- $\mathscr{V} := \{ \mathbf{z} \in \mathbb{C}^n \mid H(\mathbf{z}) = 0 \}$: the singular variety of $F = \frac{G}{H}$
- The critical points for Abs on ${\mathcal V}$ are obtained by solving a polynomial system
- $H(\mathbf{z}) = 0$, $z_1 \frac{\partial H}{\partial z_1} = \cdots = z_n \frac{\partial H}{\partial z_n}$ (critical-point equations)
- We assume that all critical points are smooth.
- Especially, we are interested in **minimal** critical points (i.e. critical points lie in $\partial \mathcal{D} \cap \mathcal{V}$).

•
$$F(\mathbf{z}) = \frac{G(\mathbf{z})}{H(\mathbf{z})}$$
 where G and H are co-prime

polynomials with $H(\mathbf{0}) \neq 0$.

- $F(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{N}^n} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: The Taylor expansion of Fcentered at the origin with a nonempty open domain of convergence $\mathcal{D} \subset \mathbb{C}^n$.
- Interested in computing the asymptotic behavior of coefficients of $(f_{\mathbf{i}})_{\mathbf{i}}$.

$$f_{i_1,\ldots,i_n} = \frac{1}{(2\pi i)^n} \int_{\gamma} \frac{F(\mathbf{z})}{z_1^{i_1}\cdots z_n^{i_n}} \cdot \frac{dz_1 \dots dz_n}{z_1 \cdots z_n}$$

- Define Abs : $(z_1, \ldots, z_n) \mapsto |z_1 \cdots z_n|$.
- We are interested in critical points of Abs.
- $\mathscr{V} := \{ \mathbf{z} \in \mathbb{C}^n \mid H(\mathbf{z}) = 0 \}$: the singular variety of $F = \frac{G}{H}$
- The critical points for Abs on ${\mathcal V}$ are obtained by solving a polynomial system
- $H(\mathbf{z}) = 0$, $z_1 \frac{\partial H}{\partial z_1} = \cdots = z_n \frac{\partial H}{\partial z_n}$ (critical-point equations)
- We assume that all critical points are smooth.
- Especially, we are interested in **minimal** critical points (i.e. critical points lie in $\partial \mathcal{D} \cap \mathcal{V}$).

•
$$F(\mathbf{z}) = \frac{G(\mathbf{z})}{H(\mathbf{z})}$$
 where G and H are co-prime

polynomials with $H(\mathbf{0}) \neq 0$.

- $F(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{N}^n} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: The Taylor expansion of Fcentered at the origin with a nonempty open domain of convergence $\mathcal{D} \subset \mathbb{C}^n$.
- Interested in computing the asymptotic behavior of coefficients of $(f_{\mathbf{i}})_{\mathbf{i}}$.

$$f_{i_1,\ldots,i_n} = \frac{1}{(2\pi i)^n} \int_{\gamma} \frac{F(\mathbf{z})}{z_1^{i_1}\cdots z_n^{i_n}} \cdot \frac{dz_1 \dots dz_n}{z_1 \cdots z_n}$$

- Define Abs : $(z_1, \ldots, z_n) \mapsto |z_1 \cdots z_n|$.
- We are interested in critical points of Abs.
- $\mathscr{V} := \{ \mathbf{z} \in \mathbb{C}^n \mid H(\mathbf{z}) = 0 \}$: the singular variety of $F = \frac{G}{H}$
- The critical points for Abs on ${\mathcal V}$ are obtained by solving a polynomial system
- $H(\mathbf{z}) = 0$, $z_1 \frac{\partial H}{\partial z_1} = \cdots = z_n \frac{\partial H}{\partial z_n}$ (critical-point equations)
- We assume that all critical points are smooth.
- Especially, we are interested in **minimal** critical points (i.e. critical points lie in $\partial \mathcal{D} \cap \mathcal{V}$).

•
$$F(\mathbf{z}) = \frac{G(\mathbf{z})}{H(\mathbf{z})}$$
 where G and H are co-prime

polynomials with $H(\mathbf{0}) \neq 0$.

- $F(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{N}^n} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: The Taylor expansion of Fcentered at the origin with a nonempty open domain of convergence $\mathcal{D} \subset \mathbb{C}^n$.
- Interested in computing the asymptotic behavior of coefficients of $(f_{\mathbf{i}})_{\mathbf{i}}$.

$$f_{i_1,\ldots,i_n} = \frac{1}{(2\pi i)^n} \int_{\gamma} \frac{F(\mathbf{z})}{z_1^{i_1}\cdots z_n^{i_n}} \cdot \frac{dz_1 \dots dz_n}{z_1 \cdots z_n}$$

- Define Abs : $(z_1, \ldots, z_n) \mapsto |z_1 \cdots z_n|$.
- We are interested in critical points of Abs.
- $\mathscr{V} := \{ \mathbf{z} \in \mathbb{C}^n \mid H(\mathbf{z}) = 0 \}$: the singular variety of $F = \frac{G}{H}$
- The critical points for Abs on ${\mathcal V}$ are obtained by solving a polynomial system
- $H(\mathbf{z}) = 0$, $z_1 \frac{\partial H}{\partial z_1} = \cdots = z_n \frac{\partial H}{\partial z_n}$ (critical-point equations)
- We assume that all critical points are smooth.
- Especially, we are interested in **minimal** critical points (i.e. critical points lie in $\partial \mathcal{D} \cap \mathcal{V}$).

•
$$F(\mathbf{z}) = \frac{G(\mathbf{z})}{H(\mathbf{z})}$$
 where G and H are co-prime

polynomials with $H(\mathbf{0}) \neq 0$.

- $F(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{N}^n} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: The Taylor expansion of Fcentered at the origin with a nonempty open domain of convergence $\mathcal{D} \subset \mathbb{C}^n$.
- Interested in computing the asymptotic behavior of coefficients of $(f_{\mathbf{i}})_{\mathbf{i}}$.

$$f_{i_1,\ldots,i_n} = \frac{1}{(2\pi i)^n} \int_{\gamma} \frac{F(\mathbf{z})}{z_1^{i_1}\cdots z_n^{i_n}} \cdot \frac{dz_1 \dots dz_n}{z_1 \cdots z_n}$$

- Define Abs : $(z_1, \ldots, z_n) \mapsto |z_1 \cdots z_n|$.
- We are interested in critical points of Abs.
- $\mathscr{V} := \{ \mathbf{z} \in \mathbb{C}^n \mid H(\mathbf{z}) = 0 \}$: the singular variety of $F = \frac{G}{H}$
- The critical points for Abs on ${\mathcal V}$ are obtained by solving a polynomial system
- $H(\mathbf{z}) = 0$, $z_1 \frac{\partial H}{\partial z_1} = \cdots = z_n \frac{\partial H}{\partial z_n}$ (critical-point equations)
- We assume that all critical points are smooth.
- Especially, we are interested in **minimal** critical points (i.e. critical points lie in $\partial \mathcal{D} \cap \mathcal{V}$).

•
$$F(\mathbf{z}) = \frac{G(\mathbf{z})}{H(\mathbf{z})}$$
 where G and H are co-prime

polynomials with $H(\mathbf{0}) \neq 0$.

- $F(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{N}^n} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: The Taylor expansion of Fcentered at the origin with a nonempty open domain of convergence $\mathcal{D} \subset \mathbb{C}^n$.
- Interested in computing the asymptotic behavior of coefficients of $(f_{\mathbf{i}})_{\mathbf{i}}$.

$$f_{i_1,\ldots,i_n} = \frac{1}{(2\pi i)^n} \int_{\gamma} \frac{F(\mathbf{z})}{z_1^{i_1}\cdots z_n^{i_n}} \cdot \frac{dz_1 \dots dz_n}{z_1 \cdots z_n}$$

- Define Abs : $(z_1, \ldots, z_n) \mapsto |z_1 \cdots z_n|$.
- We are interested in critical points of Abs.
- $\mathscr{V} := \{ \mathbf{z} \in \mathbb{C}^n \mid H(\mathbf{z}) = 0 \}$: the **singular variety** of $F = \frac{G}{H}$
- The critical points for Abs on ${\mathcal V}$ are obtained by solving a polynomial system

•
$$H(\mathbf{z}) = 0$$
, $z_1 \frac{\partial H}{\partial z_1} = \cdots = z_n \frac{\partial H}{\partial z_n}$ (critical-point equations

- We assume that all critical points are smooth.
- Especially, we are interested in **minimal** critical points (i.e. critical points lie in $\partial \mathcal{D} \cap \mathcal{V}$).

•
$$F(\mathbf{z}) = \frac{G(\mathbf{z})}{H(\mathbf{z})}$$
 where G and H are co-prime

polynomials with $H(\mathbf{0}) \neq 0$.

- $F(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{N}^n} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: The Taylor expansion of Fcentered at the origin with a nonempty open domain of convergence $\mathcal{D} \subset \mathbb{C}^n$.
- Interested in computing the asymptotic behavior of coefficients of $(f_{\mathbf{i}})_{\mathbf{i}}$.

$$f_{i_1,\ldots,i_n} = \frac{1}{(2\pi i)^n} \int_{\gamma} \frac{F(\mathbf{z})}{z_1^{i_1}\cdots z_n^{i_n}} \cdot \frac{dz_1 \dots dz_n}{z_1 \cdots z_n}$$

- Define Abs : $(z_1, \ldots, z_n) \mapsto |z_1 \cdots z_n|$.
- We are interested in critical points of Abs.
- $\mathscr{V} := \{ \mathbf{z} \in \mathbb{C}^n \mid H(\mathbf{z}) = 0 \}$: the singular variety of $F = \frac{G}{H}$
- The critical points for Abs on ${\mathscr V}$ are obtained by solving a polynomial system
- $H(\mathbf{z}) = 0$, $z_1 \frac{\partial H}{\partial z_1} = \cdots = z_n \frac{\partial H}{\partial z_n}$ (critical-point equations)
- We assume that all critical points are smooth.
- Especially, we are interested in **minimal** critical points (i.e. critical points lie in $\partial \mathcal{D} \cap \mathcal{V}$).

•
$$F(\mathbf{z}) = \frac{G(\mathbf{z})}{H(\mathbf{z})}$$
 where G and H are co-prime

polynomials with $H(\mathbf{0}) \neq 0$.

- $F(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{N}^n} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: The Taylor expansion of Fcentered at the origin with a nonempty open domain of convergence $\mathcal{D} \subset \mathbb{C}^n$.
- Interested in computing the asymptotic behavior of coefficients of $(f_{\mathbf{i}})_{\mathbf{i}}$.

$$f_{i_1,\ldots,i_n} = \frac{1}{(2\pi i)^n} \int_{\gamma} \frac{F(\mathbf{z})}{z_1^{i_1}\cdots z_n^{i_n}} \cdot \frac{dz_1 \dots dz_n}{z_1 \cdots z_n}$$

- Define Abs : $(z_1, \ldots, z_n) \mapsto |z_1 \cdots z_n|$.
- We are interested in critical points of Abs.
- $\mathscr{V} := \{ \mathbf{z} \in \mathbb{C}^n \mid H(\mathbf{z}) = 0 \}$: the singular variety of $F = \frac{G}{H}$
- The critical points for Abs on ${\mathscr V}$ are obtained by solving a polynomial system

•
$$H(\mathbf{z}) = 0$$
, $z_1 \frac{\partial H}{\partial z_1} = \cdots = z_n \frac{\partial H}{\partial z_n}$ (critical-point equations

- We assume that all critical points are smooth.
- Especially, we are interested in **minimal** critical points (i.e. critical points lie in $\partial \mathcal{D} \cap \mathcal{V}$).

•
$$F(\mathbf{z}) = \frac{G(\mathbf{z})}{H(\mathbf{z})}$$
 where G and H are co-prime

polynomials with $H(\mathbf{0}) \neq 0$.

- $F(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{N}^n} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: The Taylor expansion of Fcentered at the origin with a nonempty open domain of convergence $\mathcal{D} \subset \mathbb{C}^n$.
- Interested in computing the asymptotic behavior of coefficients of $(f_{\mathbf{i}})_{\mathbf{i}}$.

$$f_{i_1,\ldots,i_n} = \frac{1}{(2\pi i)^n} \int_{\gamma} \frac{F(\mathbf{z})}{z_1^{i_1}\cdots z_n^{i_n}} \cdot \frac{dz_1 \dots dz_n}{z_1 \cdots z_n}$$

- Define Abs : $(z_1, \ldots, z_n) \mapsto |z_1 \cdots z_n|$.
- We are interested in critical points of Abs.
- $\mathscr{V} := \{ \mathbf{z} \in \mathbb{C}^n \mid H(\mathbf{z}) = 0 \}$: the singular variety of $F = \frac{G}{H}$
- The critical points for Abs on ${\mathscr V}$ are obtained by solving a polynomial system

•
$$H(\mathbf{z}) = 0$$
, $z_1 \frac{\partial H}{\partial z_1} = \cdots = z_n \frac{\partial H}{\partial z_n}$ (critical-point equations

- We assume that all critical points are smooth.
- Especially, we are interested in **minimal** critical points (i.e. critical points lie in $\partial \mathcal{D} \cap \mathcal{V}$).

•
$$F(\mathbf{z}) = \frac{G(\mathbf{z})}{H(\mathbf{z})}$$
 where G and H are co-prime

polynomials with $H(\mathbf{0}) \neq 0$.

- $F(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{N}^n} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$: The Taylor expansion of Fcentered at the origin with a nonempty open domain of convergence $\mathcal{D} \subset \mathbb{C}^n$.
- Interested in computing the asymptotic behavior of coefficients of $(f_{\mathbf{i}})_{\mathbf{i}}$.

$$f_{i_1,\ldots,i_n} = \frac{1}{(2\pi i)^n} \int_{\gamma} \frac{F(\mathbf{z})}{z_1^{i_1}\cdots z_n^{i_n}} \cdot \frac{dz_1 \dots dz_n}{z_1 \cdots z_n}$$

- Define Abs : $(z_1, \ldots, z_n) \mapsto |z_1 \cdots z_n|$.
- We are interested in critical points of Abs.
- $\mathscr{V} := \{ \mathbf{z} \in \mathbb{C}^n \mid H(\mathbf{z}) = 0 \}$: the singular variety of $F = \frac{G}{H}$
- The critical points for Abs on ${\mathscr V}$ are obtained by solving a polynomial system

•
$$H(\mathbf{z}) = 0$$
, $z_1 \frac{\partial H}{\partial z_1} = \cdots = z_n \frac{\partial H}{\partial z_n}$ (critical-point equations

- We assume that all critical points are smooth.
- Especially, we are interested in **minimal** critical points (i.e. critical points lie in $\partial \mathcal{D} \cap \mathcal{V}$).

 $F(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{N}^n} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}} \text{ is called$ **combinatorial** $if all coefficients}$ $f_{\mathbf{i}} \text{ of the Taylor expansion are non-negative.}$

- 1. Determine the set \mathscr{S} of zeros (\mathbf{z}, λ, t) of the system $\left[H, z_1 \frac{\partial H}{\partial z_1} - \lambda, ..., z_n \frac{\partial H}{\partial z_n} - \lambda, H(tz_1, ..., tz_n)\right]$. If \mathscr{S} is not finite, then FAIL.
- 2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in S$ which are candidates for minimal critical points.
 - **z** is minimal if and only if the line segment $\{(t | z_1 |, ..., t | z_n |) | 0 < t < 1\}$ doesn't intersect \mathscr{V} .
- 3. Identify $\boldsymbol{\xi}$ among the elements of \mathscr{C} (critical points Abs on \mathscr{V}).
- 4. Return

 $F(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{N}^n} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}} \text{ is called$ **combinatorial** $if all coefficients}$ $f_{\mathbf{i}} \text{ of the Taylor expansion are non-negative.}$

- 1. Determine the set \mathscr{S} of zeros (\mathbf{Z}, λ, t) of the system $\left[H, z_1 \frac{\partial H}{\partial z_1} - \lambda, ..., z_n \frac{\partial H}{\partial z_n} - \lambda, H(tz_1, ..., tz_n)\right]$. If \mathscr{S} is not finite, then FAIL.
- 2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in S$ which are candidates for minimal critical points.
 - **z** is minimal if and only if the line segment $\{(t | z_1 |, ..., t | z_n |) | 0 < t < 1\}$ doesn't intersect \mathcal{V} .
- 3. Identify $\boldsymbol{\xi}$ among the elements of \mathscr{C} (critical points Abs on \mathscr{V}).
- 4. Return

 $F(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{N}^n} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}} \text{ is called$ **combinatorial** $if all coefficients}$ $f_{\mathbf{i}} \text{ of the Taylor expansion are non-negative.}$

- 1. Determine the set \mathscr{S} of zeros (\mathbf{Z}, λ, t) of the system $\left[H, z_1 \frac{\partial H}{\partial z_1} - \lambda, ..., z_n \frac{\partial H}{\partial z_n} - \lambda, H(tz_1, ..., tz_n)\right]$. If \mathscr{S} is not finite, then FAIL.
- 2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in \mathcal{S}$ which are candidates for minimal critical points.
 - **z** is minimal if and only if the line segment $\{(t | z_1 |, ..., t | z_n |) | 0 < t < 1\}$ doesn't intersect \mathscr{V} .
- 3. Identify $\boldsymbol{\xi}$ among the elements of \mathscr{C} (critical points Abs on \mathscr{V}).
- 4. Return

 $F(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{N}^n} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}} \text{ is called$ **combinatorial** $if all coefficients}$ $f_{\mathbf{i}} \text{ of the Taylor expansion are non-negative.}$

- 1. Determine the set \mathscr{S} of zeros (\mathbf{Z}, λ, t) of the system $\left[H, z_1 \frac{\partial H}{\partial z_1} - \lambda, ..., z_n \frac{\partial H}{\partial z_n} - \lambda, H(tz_1, ..., tz_n)\right]$. If \mathscr{S} is not finite, then FAIL.
- 2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in \mathcal{S}$ which are candidates for minimal critical points.
 - **z** is minimal if and only if the line segment $\{(t | z_1 |, ..., t | z_n |) | 0 < t < 1\}$ doesn't intersect \mathcal{V} .
- 3. Identify $\pmb{\zeta}$ among the elements of $\mathscr C$ (critical points Abs on $\mathscr V$).
- 4. Return

 $F(\mathbf{z}) = \sum_{\mathbf{i} \in \mathbb{N}^n} f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}} \text{ is called$ **combinatorial** $if all coefficients}$ $f_{\mathbf{i}} \text{ of the Taylor expansion are non-negative.}$

- 1. Determine the set \mathscr{S} of zeros (\mathbf{Z}, λ, t) of the system $\left[H, z_1 \frac{\partial H}{\partial z_1} - \lambda, ..., z_n \frac{\partial H}{\partial z_n} - \lambda, H(tz_1, ..., tz_n)\right]$. If \mathscr{S} is not finite, then FAIL.
- 2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in \mathcal{S}$ which are candidates for minimal critical points.
 - **z** is minimal if and only if the line segment $\{(t | z_1 |, ..., t | z_n |) | 0 < t < 1\}$ doesn't intersect \mathcal{V} .
- 3. Identify $\pmb{\zeta}$ among the elements of $\mathscr C$ (critical points Abs on $\mathscr V$).
- 4. Return

 $F(\mathbf{z}) = \sum f_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}$ is called **combinatorial** if all coefficients $\mathbf{i} \in \mathbb{N}^n$ $f_{\mathbf{i}}$ of the Taylor expansion are non-negative.

- 1. Determine the set \mathcal{S} of zeros (\mathbf{Z}, λ, t) of the system $\left[H, z_1 \frac{\partial H}{\partial z_1} - \lambda, \dots, z_n \frac{\partial H}{\partial z_n} - \lambda, H(tz_1, \dots, tz_n)\right].$ If \mathcal{S} is not finite, then FAIL.
- 2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in \mathcal{S}$ which are candidates for minimal critical points.
 - z is minimal if and only if the line segment { $(t | z_1 |, ..., t | z_n |) | 0 < t < 1$ } doesn't intersect \mathcal{V} .
- 3. Identify $\pmb{\zeta}$ among the elements of $\mathscr C$ (critical points Abs on V).
- 4. Return

 $\mathcal{U} := \{ \mathbf{z} \in \mathbb{C}^n \mid |z_1| = |\zeta_1|, \dots, |z_n| = |\zeta_n| \text{ for some } (\mathbf{z}, \lambda) \in \mathscr{C} \}$

Doesn't hold if F is not combinatorial

Q. How to deal with non-combinatorial case?

Lemma (Melczer-Salvy 2021) Let $D(\mathbf{z}) := \{ \mathbf{w} \in \mathbb{C}^n \mid |w_i| < |z_i|, i = 1,...,n \}$ be the open polydisk. If $\mathbf{z} \in \mathscr{V}$ and $\mathscr{V} \cap D(\mathbf{z}) = \emptyset$, then $\mathbf{z} \in \partial \mathscr{D}$

- **Q.** How to deal with polydisk using polynomial equations?
- **A.** Decompose polynomials into the real and imaginary part.

$$f(\mathbf{x} + i\mathbf{y}) = f^{(R)}(\mathbf{x}, \mathbf{y}) + if^{(I)}(\mathbf{x}, \mathbf{y})$$

For derivatives, applying Cauchy-Riemann equations, $\frac{\partial f}{\partial z_j}(\mathbf{x} + i\mathbf{y}) = \frac{1}{2} \cdot \frac{\partial}{\partial x_j} \left(f^{(R)}(\mathbf{x}, \mathbf{y}) + i f^{(I)}(\mathbf{x}, \mathbf{y}) \right) - \frac{i}{2} \cdot \frac{\partial}{\partial y_j} \left(f^{(R)}(\mathbf{x}, \mathbf{y}) + i f^{(I)}(\mathbf{x}, \mathbf{y}) \right)$ 1. Using real and imaginary part decomposition, critical-point equations are given as

$$H^{(R)}(\mathbf{a}, \mathbf{b}) = H^{(I)}(\mathbf{a}, \mathbf{b}) = 0$$

$$a_j \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_R = 0 \qquad j = 1, \dots, n$$

$$a_j \frac{\partial H^{(I)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(I)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_I = 0 \qquad j = 1, \dots, n$$

2. For checking emptiness of $\mathcal{V} \cap D(\mathbf{z}) = \mathcal{O}$, we consider equations

$$H^{(R)}(\mathbf{x}, \mathbf{y}) = H^{(I)}(\mathbf{x}, \mathbf{y}) = 0$$

$$x_j^2 + y_j^2 - t(a_j^2 + b_j^2) = 0 \qquad j = 1, ..., n$$

- Want to have no solutions with $\mathbf{x}, \mathbf{y}, t$ real and 0 < t < 1.
- 3. For checking extremity for values of *t*, we add equations

$$(y_j - \nu x_j) \frac{\partial H^{(R)}}{\partial x_j} (\mathbf{x}, \mathbf{y}) - (x_j + \nu y_j) \frac{\partial H^{(R)}}{\partial y_j} (\mathbf{x}, \mathbf{y}) = 0, \qquad j = 1, \dots, n$$

Q. How to deal with non-combinatorial case?

<u>Lemma</u> (Melczer-Salvy 2021)

Let $D(\mathbf{z}) := {\mathbf{w} \in \mathbb{C}^n \mid |w_i| < |z_i|, i = 1,...,n}$ be the open polydisk. If $\mathbf{z} \in \mathscr{V}$ and $\mathscr{V} \cap D(\mathbf{z}) = \emptyset$, then $\mathbf{z} \in \partial \mathscr{D}$.

- **Q.** How to deal with polydisk using polynomial equations?
- **A.** Decompose polynomials into the real and imaginary part.

$$f(\mathbf{x} + i\mathbf{y}) = f^{(R)}(\mathbf{x}, \mathbf{y}) + if^{(I)}(\mathbf{x}, \mathbf{y})$$

For derivatives, applying Cauchy-Riemann equations, $\frac{\partial f}{\partial z_j}(\mathbf{x} + i\mathbf{y}) = \frac{1}{2} \cdot \frac{\partial}{\partial x_j} \left(f^{(R)}(\mathbf{x}, \mathbf{y}) + i f^{(I)}(\mathbf{x}, \mathbf{y}) \right) - \frac{i}{2} \cdot \frac{\partial}{\partial y_j} \left(f^{(R)}(\mathbf{x}, \mathbf{y}) + i f^{(I)}(\mathbf{x}, \mathbf{y}) \right)$ 1. Using real and imaginary part decomposition, critical-point equations are given as

$$H^{(R)}(\mathbf{a}, \mathbf{b}) = H^{(I)}(\mathbf{a}, \mathbf{b}) = 0$$

$$a_j \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_R = 0 \qquad j = 1, \dots, n$$

$$a_j \frac{\partial H^{(I)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(I)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_I = 0 \qquad j = 1, \dots, n$$

2. For checking emptiness of $\mathcal{V} \cap D(\mathbf{z}) = \mathcal{O}$, we consider equations

$$H^{(R)}(\mathbf{x}, \mathbf{y}) = H^{(I)}(\mathbf{x}, \mathbf{y}) = 0$$

$$x_j^2 + y_j^2 - t(a_j^2 + b_j^2) = 0 \qquad j = 1, ..., n$$

- Want to have no solutions with $\mathbf{x}, \mathbf{y}, t$ real and 0 < t < 1.
- 3. For checking extremity for values of *t*, we add equations

$$(y_j - \nu x_j) \frac{\partial H^{(R)}}{\partial x_j} (\mathbf{x}, \mathbf{y}) - (x_j + \nu y_j) \frac{\partial H^{(R)}}{\partial y_j} (\mathbf{x}, \mathbf{y}) = 0, \qquad j = 1, \dots, n$$

Q. How to deal with non-combinatorial case?

<u>Lemma</u> (Melczer-Salvy 2021)

Let $D(\mathbf{z}) := \{ \mathbf{w} \in \mathbb{C}^n \mid |w_i| < |z_i|, i = 1, ..., n \}$ be the open polydisk. If $\mathbf{z} \in \mathcal{V}$ and $\mathcal{V} \cap D(\mathbf{z}) = \emptyset$, then $\mathbf{z} \in \partial \mathcal{D}$.

- **Q.** How to deal with polydisk using polynomial equations?
- **A.** Decompose polynomials into the real and imaginary part.

$$f(\mathbf{x} + i\mathbf{y}) = f^{(R)}(\mathbf{x}, \mathbf{y}) + if^{(I)}(\mathbf{x}, \mathbf{y})$$

For derivatives, applying Cauchy-Riemann equations, $\frac{\partial f}{\partial z_j}(\mathbf{x} + i\mathbf{y}) = \frac{1}{2} \cdot \frac{\partial}{\partial x_j} \left(f^{(R)}(\mathbf{x}, \mathbf{y}) + i f^{(I)}(\mathbf{x}, \mathbf{y}) \right) - \frac{i}{2} \cdot \frac{\partial}{\partial y_j} \left(f^{(R)}(\mathbf{x}, \mathbf{y}) + i f^{(I)}(\mathbf{x}, \mathbf{y}) \right)$ 1. Using real and imaginary part decomposition, critical-point equations are given as

$$H^{(R)}(\mathbf{a}, \mathbf{b}) = H^{(I)}(\mathbf{a}, \mathbf{b}) = 0$$

$$a_j \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_R = 0 \qquad j = 1, \dots, n$$

$$a_j \frac{\partial H^{(I)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(I)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_I = 0 \qquad j = 1, \dots, n$$

2. For checking emptiness of $\mathcal{V} \cap D(\mathbf{z}) = \mathcal{O}$, we consider equations

$$H^{(R)}(\mathbf{x}, \mathbf{y}) = H^{(I)}(\mathbf{x}, \mathbf{y}) = 0$$

$$x_j^2 + y_j^2 - t(a_j^2 + b_j^2) = 0 \qquad j = 1, ..., n$$

- Want to have no solutions with $\mathbf{x}, \mathbf{y}, t$ real and 0 < t < 1.
- 3. For checking extremity for values of *t*, we add equations

$$(y_j - \nu x_j) \frac{\partial H^{(R)}}{\partial x_j} (\mathbf{x}, \mathbf{y}) - (x_j + \nu y_j) \frac{\partial H^{(R)}}{\partial y_j} (\mathbf{x}, \mathbf{y}) = 0, \qquad j = 1, \dots, n$$

Q. How to deal with non-combinatorial case?

<u>Lemma</u> (Melczer-Salvy 2021)

Let $D(\mathbf{z}) := {\mathbf{w} \in \mathbb{C}^n \mid |w_i| < |z_i|, i = 1,...,n}$ be the open polydisk. If $\mathbf{z} \in \mathcal{V}$ and $\mathcal{V} \cap D(\mathbf{z}) = \emptyset$, then $\mathbf{z} \in \partial \mathcal{D}$.

- **Q.** How to deal with polydisk using polynomial equations?
- **A.** Decompose polynomials into the real and imaginary part.

$$f(\mathbf{x} + i\mathbf{y}) = f^{(R)}(\mathbf{x}, \mathbf{y}) + if^{(I)}(\mathbf{x}, \mathbf{y})$$

For derivatives, applying Cauchy-Riemann equations, $\frac{\partial f}{\partial z_j}(\mathbf{x} + i\mathbf{y}) = \frac{1}{2} \cdot \frac{\partial}{\partial x_j} \left(f^{(R)}(\mathbf{x}, \mathbf{y}) + i f^{(I)}(\mathbf{x}, \mathbf{y}) \right) - \frac{i}{2} \cdot \frac{\partial}{\partial y_j} \left(f^{(R)}(\mathbf{x}, \mathbf{y}) + i f^{(I)}(\mathbf{x}, \mathbf{y}) \right)$ 1. Using real and imaginary part decomposition, critical-point equations are given as

$$H^{(R)}(\mathbf{a}, \mathbf{b}) = H^{(I)}(\mathbf{a}, \mathbf{b}) = 0$$

$$a_j \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_R = 0 \qquad j = 1, \dots, n$$

$$a_j \frac{\partial H^{(I)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(I)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_I = 0 \qquad j = 1, \dots, n$$

2. For checking emptiness of $\mathcal{V} \cap D(\mathbf{z}) = \mathcal{O}$, we consider equations

$$H^{(R)}(\mathbf{x}, \mathbf{y}) = H^{(I)}(\mathbf{x}, \mathbf{y}) = 0$$

$$x_j^2 + y_j^2 - t(a_j^2 + b_j^2) = 0 \qquad j = 1, ..., n$$

- Want to have no solutions with $\mathbf{x}, \mathbf{y}, t$ real and 0 < t < 1.
- 3. For checking extremity for values of *t*, we add equations

$$(y_j - \nu x_j) \frac{\partial H^{(R)}}{\partial x_j} (\mathbf{x}, \mathbf{y}) - (x_j + \nu y_j) \frac{\partial H^{(R)}}{\partial y_j} (\mathbf{x}, \mathbf{y}) = 0, \qquad j = 1, \dots, n$$

Q. How to deal with non-combinatorial case?

<u>Lemma</u> (Melczer-Salvy 2021)

Let $D(\mathbf{z}) := {\mathbf{w} \in \mathbb{C}^n \mid |w_i| < |z_i|, i = 1,...,n}$ be the open polydisk. If $\mathbf{z} \in \mathscr{V}$ and $\mathscr{V} \cap D(\mathbf{z}) = \emptyset$, then $\mathbf{z} \in \partial \mathscr{D}$.

- **Q.** How to deal with polydisk using polynomial equations?
- **A.** Decompose polynomials into the real and imaginary part.

$$f(\mathbf{x} + i\mathbf{y}) = f^{(R)}(\mathbf{x}, \mathbf{y}) + if^{(I)}(\mathbf{x}, \mathbf{y})$$

For derivatives, applying Cauchy-Riemann equations, $\frac{\partial f}{\partial z_j}(\mathbf{x} + i\mathbf{y}) = \frac{1}{2} \cdot \frac{\partial}{\partial x_j} \left(f^{(R)}(\mathbf{x}, \mathbf{y}) + i f^{(I)}(\mathbf{x}, \mathbf{y}) \right) - \frac{i}{2} \cdot \frac{\partial}{\partial y_j} \left(f^{(R)}(\mathbf{x}, \mathbf{y}) + i f^{(I)}(\mathbf{x}, \mathbf{y}) \right)$ 1. Using real and imaginary part decomposition, critical-point equations are given as

$$H^{(R)}(\mathbf{a}, \mathbf{b}) = H^{(I)}(\mathbf{a}, \mathbf{b}) = 0$$

$$a_j \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_R = 0 \qquad j = 1, \dots, n$$

$$a_j \frac{\partial H^{(I)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(I)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_I = 0 \qquad j = 1, \dots, n$$

2. For checking emptiness of $\mathcal{V} \cap D(\mathbf{z}) = \mathcal{O}$, we consider equations

$$H^{(R)}(\mathbf{x}, \mathbf{y}) = H^{(I)}(\mathbf{x}, \mathbf{y}) = 0$$

$$x_j^2 + y_j^2 - t(a_j^2 + b_j^2) = 0 \qquad j = 1, ..., n$$

- Want to have no solutions with $\mathbf{x}, \mathbf{y}, t$ real and 0 < t < 1.
- 3. For checking extremity for values of *t*, we add equations

$$(y_j - \nu x_j) \frac{\partial H^{(R)}}{\partial x_j} (\mathbf{x}, \mathbf{y}) - (x_j + \nu y_j) \frac{\partial H^{(R)}}{\partial y_j} (\mathbf{x}, \mathbf{y}) = 0, \qquad j = 1, \dots, n$$

Q. How to deal with non-combinatorial case?

<u>Lemma</u> (Melczer-Salvy 2021)

Let $D(\mathbf{z}) := \{ \mathbf{w} \in \mathbb{C}^n \mid |w_i| < |z_i|, i = 1, ..., n \}$ be the open polydisk. If $\mathbf{z} \in \mathcal{V}$ and $\mathcal{V} \cap D(\mathbf{z}) = \emptyset$, then $\mathbf{z} \in \partial \mathcal{D}$.

- **Q.** How to deal with polydisk using polynomial equations?
- **A.** Decompose polynomials into the real and imaginary part.

$$f(\mathbf{x} + i\mathbf{y}) = f^{(R)}(\mathbf{x}, \mathbf{y}) + if^{(I)}(\mathbf{x}, \mathbf{y})$$

For derivatives, applying Cauchy-Riemann equations, $\frac{\partial f}{\partial z_j}(\mathbf{x} + i\mathbf{y}) = \frac{1}{2} \cdot \frac{\partial}{\partial x_j} \left(f^{(R)}(\mathbf{x}, \mathbf{y}) + i f^{(I)}(\mathbf{x}, \mathbf{y}) \right) - \frac{i}{2} \cdot \frac{\partial}{\partial y_j} \left(f^{(R)}(\mathbf{x}, \mathbf{y}) + i f^{(I)}(\mathbf{x}, \mathbf{y}) \right)$ 1. Using real and imaginary part decomposition, critical-point equations are given as

$$H^{(R)}(\mathbf{a}, \mathbf{b}) = H^{(I)}(\mathbf{a}, \mathbf{b}) = 0$$

$$a_j \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_R = 0 \qquad j = 1, \dots, n$$

$$a_j \frac{\partial H^{(I)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(I)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_I = 0 \qquad j = 1, \dots, n$$

2. For checking emptiness of $\mathcal{V} \cap D(\mathbf{z}) = \mathcal{O}$, we consider equations

$$H^{(R)}(\mathbf{x}, \mathbf{y}) = H^{(I)}(\mathbf{x}, \mathbf{y}) = 0$$

$$x_j^2 + y_j^2 - t(a_j^2 + b_j^2) = 0 \qquad j = 1, ..., n$$

- Want to have no solutions with $\mathbf{x}, \mathbf{y}, t$ real and 0 < t < 1.
- 3. For checking extremity for values of *t*, we add equations

$$(y_j - \nu x_j) \frac{\partial H^{(R)}}{\partial x_j} (\mathbf{x}, \mathbf{y}) - (x_j + \nu y_j) \frac{\partial H^{(R)}}{\partial y_j} (\mathbf{x}, \mathbf{y}) = 0, \qquad j = 1, \dots, n$$

Q. How to deal with non-combinatorial case?

<u>Lemma</u> (Melczer-Salvy 2021)

Let $D(\mathbf{z}) := \{ \mathbf{w} \in \mathbb{C}^n \mid |w_i| < |z_i|, i = 1, ..., n \}$ be the open polydisk. If $\mathbf{z} \in \mathcal{V}$ and $\mathcal{V} \cap D(\mathbf{z}) = \emptyset$, then $\mathbf{z} \in \partial \mathcal{D}$.

- **Q.** How to deal with polydisk using polynomial equations?
- **A.** Decompose polynomials into the real and imaginary part.

$$f(\mathbf{x} + i\mathbf{y}) = f^{(R)}(\mathbf{x}, \mathbf{y}) + if^{(I)}(\mathbf{x}, \mathbf{y})$$

For derivatives, applying Cauchy-Riemann equations, $\frac{\partial f}{\partial z_j}(\mathbf{x} + i\mathbf{y}) = \frac{1}{2} \cdot \frac{\partial}{\partial x_j} \left(f^{(R)}(\mathbf{x}, \mathbf{y}) + i f^{(I)}(\mathbf{x}, \mathbf{y}) \right) - \frac{i}{2} \cdot \frac{\partial}{\partial y_j} \left(f^{(R)}(\mathbf{x}, \mathbf{y}) + i f^{(I)}(\mathbf{x}, \mathbf{y}) \right)$ 1. Using real and imaginary part decomposition, critical-point equations are given as

$$H^{(R)}(\mathbf{a}, \mathbf{b}) = H^{(I)}(\mathbf{a}, \mathbf{b}) = 0$$

$$a_j \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_R = 0 \qquad j = 1, \dots, n$$

$$a_j \frac{\partial H^{(I)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(I)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_I = 0 \qquad j = 1, \dots, n$$

2. For checking emptiness of $\mathcal{V} \cap D(\mathbf{z}) = \emptyset$, we consider equations

$$H^{(R)}(\mathbf{x}, \mathbf{y}) = H^{(I)}(\mathbf{x}, \mathbf{y}) = 0$$

$$x_j^2 + y_j^2 - t(a_j^2 + b_j^2) = 0 \qquad j = 1, ..., n$$

- Want to have no solutions with $\mathbf{x}, \mathbf{y}, t$ real and 0 < t < 1.
- 3. For checking extremity for values of *t*, we add equations

$$(y_j - \nu x_j) \frac{\partial H^{(R)}}{\partial x_j} (\mathbf{x}, \mathbf{y}) - (x_j + \nu y_j) \frac{\partial H^{(R)}}{\partial y_j} (\mathbf{x}, \mathbf{y}) = 0, \qquad j = 1, \dots, n$$

Q. How to deal with non-combinatorial case?

<u>Lemma</u> (Melczer-Salvy 2021)

Let $D(\mathbf{z}) := \{ \mathbf{w} \in \mathbb{C}^n \mid |w_i| < |z_i|, i = 1, ..., n \}$ be the open polydisk. If $\mathbf{z} \in \mathcal{V}$ and $\mathcal{V} \cap D(\mathbf{z}) = \emptyset$, then $\mathbf{z} \in \partial \mathcal{D}$.

- **Q.** How to deal with polydisk using polynomial equations?
- **A.** Decompose polynomials into the real and imaginary part.

$$f(\mathbf{x} + i\mathbf{y}) = f^{(R)}(\mathbf{x}, \mathbf{y}) + if^{(I)}(\mathbf{x}, \mathbf{y})$$

For derivatives, applying Cauchy-Riemann equations, $\frac{\partial f}{\partial z_j}(\mathbf{x} + i\mathbf{y}) = \frac{1}{2} \cdot \frac{\partial}{\partial x_j} \left(f^{(R)}(\mathbf{x}, \mathbf{y}) + i f^{(I)}(\mathbf{x}, \mathbf{y}) \right) - \frac{i}{2} \cdot \frac{\partial}{\partial y_j} \left(f^{(R)}(\mathbf{x}, \mathbf{y}) + i f^{(I)}(\mathbf{x}, \mathbf{y}) \right)$ 1. Using real and imaginary part decomposition, critical-point equations are given as

$$H^{(R)}(\mathbf{a}, \mathbf{b}) = H^{(I)}(\mathbf{a}, \mathbf{b}) = 0$$

$$a_j \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_R = 0 \qquad j = 1, \dots, n$$

$$a_j \frac{\partial H^{(I)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(I)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_I = 0 \qquad j = 1, \dots, n$$

2. For checking emptiness of $\mathcal{V} \cap D(\mathbf{z}) = \mathcal{O}$, we consider equations

$$H^{(R)}(\mathbf{x}, \mathbf{y}) = H^{(I)}(\mathbf{x}, \mathbf{y}) = 0$$

$$x_j^2 + y_j^2 - t(a_j^2 + b_j^2) = 0 \qquad j = 1, ..., n$$

Want to have no solutions with $\mathbf{x}, \mathbf{y}, t$ real and 0 < t < 1.

3. For checking extremity for values of *t*, we add equations

$$(y_j - \nu x_j) \frac{\partial H^{(R)}}{\partial x_j} (\mathbf{x}, \mathbf{y}) - (x_j + \nu y_j) \frac{\partial H^{(R)}}{\partial y_j} (\mathbf{x}, \mathbf{y}) = 0, \qquad j = 1, \dots, n$$

Q. How to deal with non-combinatorial case?

<u>Lemma</u> (Melczer-Salvy 2021)

Let $D(\mathbf{z}) := \{ \mathbf{w} \in \mathbb{C}^n \mid |w_i| < |z_i|, i = 1, ..., n \}$ be the open polydisk. If $\mathbf{z} \in \mathcal{V}$ and $\mathcal{V} \cap D(\mathbf{z}) = \emptyset$, then $\mathbf{z} \in \partial \mathcal{D}$.

- **Q.** How to deal with polydisk using polynomial equations?
- **A.** Decompose polynomials into the real and imaginary part.

$$f(\mathbf{x} + i\mathbf{y}) = f^{(R)}(\mathbf{x}, \mathbf{y}) + if^{(I)}(\mathbf{x}, \mathbf{y})$$

For derivatives, applying Cauchy-Riemann equations, $\frac{\partial f}{\partial z_j}(\mathbf{x} + i\mathbf{y}) = \frac{1}{2} \cdot \frac{\partial}{\partial x_j} \left(f^{(R)}(\mathbf{x}, \mathbf{y}) + i f^{(I)}(\mathbf{x}, \mathbf{y}) \right) - \frac{i}{2} \cdot \frac{\partial}{\partial y_j} \left(f^{(R)}(\mathbf{x}, \mathbf{y}) + i f^{(I)}(\mathbf{x}, \mathbf{y}) \right)$ 1. Using real and imaginary part decomposition, critical-point equations are given as

$$H^{(R)}(\mathbf{a}, \mathbf{b}) = H^{(I)}(\mathbf{a}, \mathbf{b}) = 0$$

$$a_j \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_R = 0 \qquad j = 1, \dots, n$$

$$a_j \frac{\partial H^{(I)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(I)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_I = 0 \qquad j = 1, \dots, n$$

2. For checking emptiness of $\mathcal{V} \cap D(\mathbf{z}) = \mathcal{O}$, we consider equations

$$H^{(R)}(\mathbf{x}, \mathbf{y}) = H^{(I)}(\mathbf{x}, \mathbf{y}) = 0$$

$$x_j^2 + y_j^2 - t(a_j^2 + b_j^2) = 0 \qquad j = 1, \dots, n$$

Want to have no solutions with $\mathbf{x}, \mathbf{y}, t$ real and 0 < t < 1.

3. For checking extremity for values of *t*, we add equations

$$(y_j - \nu x_j) \frac{\partial H^{(R)}}{\partial x_j} (\mathbf{x}, \mathbf{y}) - (x_j + \nu y_j) \frac{\partial H^{(R)}}{\partial y_j} (\mathbf{x}, \mathbf{y}) = 0, \qquad j = 1, \dots, n$$

$$H^{(R)}(\mathbf{a}, \mathbf{b}) = H^{(I)}(\mathbf{a}, \mathbf{b}) = 0$$

$$a_{j} \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b}) + b_{j} \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b}) - \lambda_{R} = 0 \qquad j = 1, ..., n$$

$$a_{j} \frac{\partial H^{(I)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b}) + b_{j} \frac{\partial H^{(I)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b}) - \lambda_{I} = 0 \qquad j = 1, ..., n$$

$$H^{(R)}(\mathbf{x}, \mathbf{y}) = H^{(I)}(\mathbf{x}, \mathbf{y}) = 0$$

$$x_{j}^{2} + y_{j}^{2} - t(a_{j}^{2} + b_{j}^{2}) = 0 \qquad j = 1, ..., n$$

$$(y_{j} - \nu x_{j}) \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{x}, \mathbf{y}) - (x_{j} + \nu y_{j}) \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{x}, \mathbf{y}) = 0 \qquad j = 1, ..., n$$

 (\star) is a square polynomial system with 4n + 4 variables $(\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \lambda_R, \lambda_I, \nu, t)$.

(★)

- 1. Determine the set \mathscr{S} of zeros (\mathbf{Z}, λ, t) of the system $\left[H, z_1 \frac{\partial H}{\partial z_1} \lambda, ..., z_n \frac{\partial H}{\partial z_n} \lambda, H(tz_1, ..., tz_n)\right]$. If \mathscr{S} is not finite, then FAIL.
- 2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in \mathcal{S}$ which are candidates for minimal critical points.
 - **z** is minimal if and only if the line segment $\{(t | z_1 |, ..., t | z_n |) | 0 < t < 1\}$ doesn't intersect \mathcal{V} .
- 3. Identify $\boldsymbol{\xi}$ among the elements of \mathscr{C} (critical points Abs on \mathscr{V}).
- 4. Return

 $\mathcal{U} := \{ \mathbf{z} \in \mathbb{C}^n \mid |z_1| = |\zeta_1|, ..., |z_n| = |\zeta_n| \text{ for some } (\mathbf{z}, \lambda) \in \mathscr{C} \}$

- 1. Determine the set S of zeros (**a**, **b**, **x**, **y**, λ_R , λ_I , ν , t) of the system (\star). If S is not finite, then FAIL.
- 2. Construct the set of minimal critical points $\mathscr{U} := \{ \mathbf{a} + i\mathbf{b} \mid (\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \lambda_R, \lambda_I, \nu, t) \in \mathscr{S}_{\mathbb{R}}, t \notin (0, 1) \} \subset \mathscr{S}$

- 3. If $\mathscr{U} = \emptyset$ or $\lambda_R = \lambda_I = 0$ or the elements of \mathscr{U} do not all belong to the same torus, then FAIL.
- 4. Identify elements of \mathscr{U} from \mathscr{C} and return them.

- 1. Determine the set \mathscr{S} of zeros (\mathbf{Z}, λ, t) of the system $\left[H, z_1 \frac{\partial H}{\partial z_1} \lambda, ..., z_n \frac{\partial H}{\partial z_n} \lambda, H(tz_1, ..., tz_n)\right]$. If \mathscr{S} is not finite, then FAIL.
- 2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in \mathcal{S}$ which are candidates for minimal critical points.
 - **z** is minimal if and only if the line segment $\{(t | z_1 |, ..., t | z_n |) | 0 < t < 1\}$ doesn't intersect \mathcal{V} .
- 3. Identify $\boldsymbol{\xi}$ among the elements of \mathscr{C} (critical points Abs on \mathscr{V}).
- 4. Return

 $\mathcal{U} := \{ \mathbf{z} \in \mathbb{C}^n \mid |z_1| = |\zeta_1|, ..., |z_n| = |\zeta_n| \text{ for some } (\mathbf{z}, \lambda) \in \mathscr{C} \}$

- 1. Determine the set S of zeros (**a**, **b**, **x**, **y**, λ_R , λ_I , ν , t) of the system (\star). If S is not finite, then FAIL.
- 2. Construct the set of minimal critical points $\mathscr{U} := \{ \mathbf{a} + i\mathbf{b} \mid (\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \lambda_R, \lambda_I, \nu, t) \in \mathscr{S}_{\mathbb{R}}, t \notin (0, 1) \} \subset \mathscr{S}_{\mathbb{R}} \}$

- 3. If $\mathscr{U} = \emptyset$ or $\lambda_R = \lambda_I = 0$ or the elements of \mathscr{U} do not all belong to the same torus, then FAIL.
- 4. Identify elements of \mathscr{U} from \mathscr{C} and return them.

- 1. Determine the set \mathscr{S} of zeros (\mathbf{Z}, λ, t) of the system $\left[H, z_1 \frac{\partial H}{\partial z_1} \lambda, ..., z_n \frac{\partial H}{\partial z_n} \lambda, H(tz_1, ..., tz_n)\right]$. If \mathscr{S} is not finite, then FAIL.
- 2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in \mathcal{S}$ which are candidates for minimal critical points.
 - **z** is minimal if and only if the line segment $\{(t | z_1 |, ..., t | z_n |) | 0 < t < 1\}$ doesn't intersect \mathcal{V} .
- 3. Identify $\boldsymbol{\xi}$ among the elements of \mathscr{C} (critical points Abs on \mathscr{V}).
- 4. Return

 $\mathcal{U} := \{ \mathbf{z} \in \mathbb{C}^n \mid |z_1| = |\zeta_1|, ..., |z_n| = |\zeta_n| \text{ for some } (\mathbf{z}, \lambda) \in \mathscr{C} \}$

- 1. Determine the set S of zeros (**a**, **b**, **x**, **y**, λ_R , λ_I , ν , t) of the system (\star). If S is not finite, then FAIL.
- 2. Construct the set of minimal critical points $\mathcal{U} := \{ \mathbf{a} + i\mathbf{b} \mid (\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \lambda_R, \lambda_I, \nu, t) \in \mathcal{S}_{\mathbb{R}}, t \notin (0, 1) \} \subset \mathcal{S}$

- 3. If $\mathscr{U} = \emptyset$ or $\lambda_R = \lambda_I = 0$ or the elements of \mathscr{U} do not all belong to the same torus, then FAIL.
- 4. Identify elements of \mathscr{U} from \mathscr{C} and return them.

- 1. Determine the set \mathscr{S} of zeros (\mathbf{Z}, λ, t) of the system $\left[H, z_1 \frac{\partial H}{\partial z_1} \lambda, ..., z_n \frac{\partial H}{\partial z_n} \lambda, H(tz_1, ..., tz_n)\right]$. If \mathscr{S} is not finite, then FAIL.
- 2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in \mathcal{S}$ which are candidates for minimal critical points.
 - **z** is minimal if and only if the line segment $\{(t | z_1 |, ..., t | z_n |) | 0 < t < 1\}$ doesn't intersect \mathscr{V} .
- 3. Identify $\boldsymbol{\xi}$ among the elements of \mathscr{C} (critical points Abs on \mathscr{V}).
- 4. Return

 $\mathcal{U} := \{ \mathbf{z} \in \mathbb{C}^n \mid |z_1| = |\zeta_1|, ..., |z_n| = |\zeta_n| \text{ for some } (\mathbf{z}, \lambda) \in \mathscr{C} \}$

- 1. Determine the set S of zeros (**a**, **b**, **x**, **y**, λ_R , λ_I , ν , t) of the system (\star). If S is not finite, then FAIL.
- 2. Construct the set of minimal critical points $\mathcal{U} := \{ \mathbf{a} + i\mathbf{b} \mid (\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \lambda_R, \lambda_I, \nu, t) \in \mathcal{S}_{\mathbb{R}}, t \notin (0, 1) \} \subset \mathcal{S}$

- 3. If $\mathscr{U} = \emptyset$ or $\lambda_R = \lambda_I = 0$ or the elements of \mathscr{U} do not all belong to the same torus, then FAIL.
- 4. Identify elements of \mathscr{U} from \mathscr{C} and return them.

- 1. Determine the set \mathscr{S} of zeros (\mathbf{Z}, λ, t) of the system $\left[H, z_1 \frac{\partial H}{\partial z_1} \lambda, ..., z_n \frac{\partial H}{\partial z_n} \lambda, H(tz_1, ..., tz_n)\right]$. If \mathscr{S} is not finite, then FAIL.
- 2. Construct the subset points $(\boldsymbol{\zeta}, \lambda, t) \in \mathcal{S}$ which are candidates for minimal critical points.
 - **z** is minimal if and only if the line segment $\{(t | z_1 |, ..., t | z_n |) | 0 < t < 1\}$ doesn't intersect \mathscr{V} .
- 3. Identify $\boldsymbol{\xi}$ among the elements of \mathscr{C} (critical points Abs on \mathscr{V}).
- 4. Return

 $\mathcal{U} := \{ \mathbf{z} \in \mathbb{C}^n \mid |z_1| = |\zeta_1|, ..., |z_n| = |\zeta_n| \text{ for some } (\mathbf{z}, \lambda) \in \mathscr{C} \}$

- 1. Determine the set S of zeros (**a**, **b**, **x**, **y**, λ_R , λ_I , ν , t) of the system (\star). If S is not finite, then FAIL.
- 2. Construct the set of minimal critical points $\mathcal{U} := \{ \mathbf{a} + i\mathbf{b} \mid (\mathbf{a}, \mathbf{b}, \mathbf{x}, \mathbf{y}, \lambda_R, \lambda_I, \nu, t) \in \mathcal{S}_{\mathbb{R}}, t \notin (0, 1) \} \subset \mathcal{S}$

- 3. If $\mathcal{U} = \emptyset$ or $\lambda_R = \lambda_I = 0$ or the elements of \mathcal{U} do not all belong to the same torus, then FAIL.
- 4. Identify elements of \mathscr{U} from \mathscr{C} and return them.

ACSVHomotopy.jl (L.-Melczer-Smolčić 2022)

- Implemented using HomotopyContinuation.jl (Breiding-Timme 2018)
- Available at github.com/ACSVMath/ACSVHomotopy

- Competitive to other ACSV software for combinatorial cases.
 - Solve the critical-point equations using the polyhedral homotopy
- The first software of ACSV for noncombinatorial cases.
 - Solve the decomposed critical-point equations (\star) using the polyhedral homotopy
 - Provide faster heuristics including the monodromy method.

The polyhedral homotopy is the default for solving critical point equations.

- Returns reliable results via interval arithmetic certification.
- Effective for combinatorial case compared to other software based on symbolic algorithm.
- May be slow for non-combinatorial.
 - Faster heuristics used.

The polyhedral homotopy is the default for solving critical point equations.

- Returns reliable results via interval arithmetic certification.
- Effective for combinatorial case compared to other software based on symbolic algorithm.
- May be slow for non-combinatorial.
 - Faster heuristics used.

Heuristics for non-combinatorial case.

$$\begin{aligned} H^{(R)}(\mathbf{a},\mathbf{b}) &= H^{(I)}(\mathbf{a},\mathbf{b}) = 0\\ a_j \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{a},\mathbf{b}) + b_j \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{a},\mathbf{b}) - \lambda_R &= 0 \qquad j = 1,...,n\\ a_j \frac{\partial H^{(I)}}{\partial x_j}(\mathbf{a},\mathbf{b}) + b_j \frac{\partial H^{(I)}}{\partial y_j}(\mathbf{a},\mathbf{b}) - \lambda_I &= 0 \qquad j = 1,...,n\\ H^{(R)}(\mathbf{x},\mathbf{y}) &= H^{(I)}(\mathbf{x},\mathbf{y}) = 0\\ x_j^2 + y_j^2 - t(a_j^2 + b_j^2) &= 0 \qquad j = 1,...,n\\ (y_j - \nu x_j) \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{x},\mathbf{y}) - (x_j + \nu y_j) \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{x},\mathbf{y}) = 0 \qquad j = 1,...,n \end{aligned}$$

1. Approximating critical points

 (\star)

Heuristics for non-combinatorial case.

$$\begin{aligned} H^{(R)}(\mathbf{a},\mathbf{b}) &= H^{(I)}(\mathbf{a},\mathbf{b}) = 0\\ a_j \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{a},\mathbf{b}) + b_j \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{a},\mathbf{b}) - \lambda_R &= 0 \qquad j = 1,...,n\\ a_j \frac{\partial H^{(I)}}{\partial x_j}(\mathbf{a},\mathbf{b}) + b_j \frac{\partial H^{(I)}}{\partial y_j}(\mathbf{a},\mathbf{b}) - \lambda_I &= 0 \qquad j = 1,...,n\\ H^{(R)}(\mathbf{x},\mathbf{y}) &= H^{(I)}(\mathbf{x},\mathbf{y}) = 0\\ x_j^2 + y_j^2 - t(a_j^2 + b_j^2) &= 0 \qquad j = 1,...,n\\ (y_j - \nu x_j) \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{x},\mathbf{y}) - (x_j + \nu y_j) \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{x},\mathbf{y}) = 0 \qquad j = 1,...,n \end{aligned}$$

1. Approximating critical points

 (\star)

Heuristics for non-combinatorial case.

$$\begin{aligned} H^{(R)}(\mathbf{a},\mathbf{b}) &= H^{(I)}(\mathbf{a},\mathbf{b}) = 0\\ a_j \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{a},\mathbf{b}) + b_j \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{a},\mathbf{b}) - \lambda_R &= 0 \qquad j = 1,...,n\\ a_j \frac{\partial H^{(I)}}{\partial x_j}(\mathbf{a},\mathbf{b}) + b_j \frac{\partial H^{(I)}}{\partial y_j}(\mathbf{a},\mathbf{b}) - \lambda_I &= 0 \qquad j = 1,...,n\\ H^{(R)}(\mathbf{x},\mathbf{y}) &= H^{(I)}(\mathbf{x},\mathbf{y}) = 0\\ x_j^2 + y_j^2 - t(a_j^2 + b_j^2) &= 0 \qquad j = 1,...,n \end{aligned}$$
$$(y_j - \nu x_j) \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{x},\mathbf{y}) - (x_j + \nu y_j) \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{x},\mathbf{y}) = 0 \qquad j = 1,...,n \end{aligned}$$

1. Approximating critical points

Solve the subsystem (A) to get an approximation of (a, b).

Using the approximations, solve the subsystem (B).

(B)

(A)

Heuristics for non-combinatorial case.

$$H^{(R)}(\mathbf{a}, \mathbf{b}) = H^{(I)}(\mathbf{a}, \mathbf{b}) = 0$$

$$a_{j} \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b}) + b_{j} \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b}) - \lambda_{R} = 0 \qquad j = 1, ..., n$$

$$a_{j} \frac{\partial H^{(I)}}{\partial x_{j}}(\mathbf{a}, \mathbf{b}) + b_{j} \frac{\partial H^{(I)}}{\partial y_{j}}(\mathbf{a}, \mathbf{b}) - \lambda_{I} = 0 \qquad j = 1, ..., n$$

$$H^{(R)}(\mathbf{x}, \mathbf{y}) = H^{(I)}(\mathbf{x}, \mathbf{y}) = 0$$

$$x_{j}^{2} + y_{j}^{2} - t(a_{j}^{2} + b_{j}^{2}) = 0 \qquad j = 1, ..., n$$

$$y_{j} - \nu x_{j}) \frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{x}, \mathbf{y}) - (x_{j} + \nu y_{j}) \frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{x}, \mathbf{y}) = 0 \qquad j = 1, ..., n$$

- 1. Approximating critical points
 - Solve the subsystem (A) to get an approximation of (a, b).
 - Using the approximations, solve the subsystem (B).

(B)

(*A*)

Heuristics for non-combinatorial case.

$$H^{(R)}(\mathbf{a}, \mathbf{b}) = H^{(I)}(\mathbf{a}, \mathbf{b}) = 0$$

$$a_j \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_R = 0 \qquad j = 1, ..., n$$

$$a_j \frac{\partial H^{(I)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(I)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_I = 0 \qquad j = 1, ..., n$$

$$H^{(R)}(\mathbf{x}, \mathbf{y}) = H^{(I)}(\mathbf{x}, \mathbf{y}) = 0$$

$$x_j^2 + y_j^2 - t(a_j^2 + b_j^2) = 0 \qquad j = 1, ..., n$$

$$y_j - \nu x_j) \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{x}, \mathbf{y}) - (x_j + \nu y_j) \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{x}, \mathbf{y}) = 0 \qquad j = 1, ..., n$$

- 1. Approximating critical points
 - Solve the subsystem (A) to get an approximation of (a, b).
 - Using the approximations, solve the subsystem (B).

(B)

(*A***)**

Heuristics for non-combinatorial case.

$$\begin{aligned} H^{(R)}(\mathbf{a},\mathbf{b}) &= H^{(I)}(\mathbf{a},\mathbf{b}) = 0\\ a_j \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{a},\mathbf{b}) + b_j \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{a},\mathbf{b}) - \lambda_R &= 0 \qquad j = 1,...,n\\ a_j \frac{\partial H^{(I)}}{\partial x_j}(\mathbf{a},\mathbf{b}) + b_j \frac{\partial H^{(I)}}{\partial y_j}(\mathbf{a},\mathbf{b}) - \lambda_I &= 0 \qquad j = 1,...,n\\ H^{(R)}(\mathbf{x},\mathbf{y}) &= H^{(I)}(\mathbf{x},\mathbf{y}) = 0\\ x_j^2 + y_j^2 - t(a_j^2 + b_j^2) &= 0 \qquad j = 1,...,n \end{aligned}$$
$$(y_j - \nu x_j) \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{x},\mathbf{y}) - (x_j + \nu y_j) \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{x},\mathbf{y}) = 0 \qquad j = 1,...,n \end{aligned}$$

2. Monodromy

(A)

(B)

- Solve the subsystem (A) to get an approximation of (a, b).
- Solve the subsystem (B) using monodromy with ($\mathbf{x}, \mathbf{y}, t$) = ($\mathbf{a}, \mathbf{b}, 1$).
- Caveat : the subsystem (B) may have several irreducible components. (Fail to find all critical points)

Heuristics for non-combinatorial case.

$$\begin{aligned} H^{(R)}(\mathbf{a},\mathbf{b}) &= H^{(I)}(\mathbf{a},\mathbf{b}) = 0\\ a_j \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{a},\mathbf{b}) + b_j \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{a},\mathbf{b}) - \lambda_R &= 0 \qquad j = 1,...,n\\ a_j \frac{\partial H^{(I)}}{\partial x_j}(\mathbf{a},\mathbf{b}) + b_j \frac{\partial H^{(I)}}{\partial y_j}(\mathbf{a},\mathbf{b}) - \lambda_I &= 0 \qquad j = 1,...,n\\ H^{(R)}(\mathbf{x},\mathbf{y}) &= H^{(I)}(\mathbf{x},\mathbf{y}) = 0\\ x_j^2 + y_j^2 - t(a_j^2 + b_j^2) &= 0 \qquad j = 1,...,n \end{aligned}$$
$$(y_j - \nu x_j) \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{x},\mathbf{y}) - (x_j + \nu y_j) \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{x},\mathbf{y}) = 0 \qquad j = 1,...,n \end{aligned}$$

Monodromy 2.

(A)

(B)

- Solve the subsystem (A) to get an approximation of (a, b).
- Solve the subsystem (B) using monodromy with $(\mathbf{x}, \mathbf{y}, t) = (\mathbf{a}, \mathbf{b}, 1)$.
- Caveat : the subsystem (*B*) may have several irreducible components. (Fail to find all critical points)

Heuristics for non-combinatorial case.

$$H^{(R)}(\mathbf{a}, \mathbf{b}) = H^{(I)}(\mathbf{a}, \mathbf{b}) = 0$$

$$a_j \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_R = 0 \qquad j = 1, \dots, n$$

$$a_j \frac{\partial H^{(I)}}{\partial x_j}(\mathbf{a}, \mathbf{b}) + b_j \frac{\partial H^{(I)}}{\partial y_j}(\mathbf{a}, \mathbf{b}) - \lambda_I = 0 \qquad j = 1, \dots, n$$

$$H^{(R)}(\mathbf{x}, \mathbf{y}) = H^{(I)}(\mathbf{x}, \mathbf{y}) = 0$$

$$x_j^2 + y_j^2 - t(a_j^2 + b_j^2) = 0 \qquad j = 1, \dots, n$$

$$(y_j - \nu x_j) \frac{\partial H^{(R)}}{\partial x_j}(\mathbf{x}, \mathbf{y}) - (x_j + \nu y_j) \frac{\partial H^{(R)}}{\partial y_j}(\mathbf{x}, \mathbf{y}) = 0 \qquad j = 1, \dots, n$$

Monodromy 2.

(A)

(B)

- Solve the subsystem (A) to get an approximation of (a, b).
- Solve the subsystem (B) using monodromy with $(\mathbf{x}, \mathbf{y}, t) = (\mathbf{a}, \mathbf{b}, 1)$.
- Caveat : the subsystem (B) may have several irreducible components. (Fail to find all critical points)

Experiments : Combinatorial examples

Exampl Elapsed time (s)	es square-root	Apéry ζ(2)	Apéry ζ(3)	Random	3D Walk
ACSVHomotopy.jl	0.01	0.025	0.7	0.9	0.08
Maple implementation	0.06	0.06	0.3	840	2.7

Experiments : Non-combinatorial examples

INC indicates the code did not complete after running for an hour.

Experiments : Combinatorial examples

Exampl Elapsed time (s)	es square-root	Apéry ζ(2)	Apéry ζ(3)	Random	3D Walk
ACSVHomotopy.jl	0.01	0.025	0.7	0.9	0.08
Maple implementation	0.06	0.06	0.3	840	2.7

Experiments : Non-combinatorial examples

Examples Elapsed time (s)	square-root	Apéry ζ(2)	2D Walk	GRZ	Random	
Polyhedral homotopy	29.5	670	INC	236	INC	
Approximating Crits	0.72	3.8	15.3	3.6	189.4	
Monodromy	14.9	8.5	31.9	3.8	583.1	

INC indicates the code did not complete after running for an hour.

Future directions

$$\begin{aligned} H^{(R)}(\mathbf{a},\mathbf{b}) &= H^{(I)}(\mathbf{a},\mathbf{b}) = 0\\ a_{j}\frac{\partial H^{(R)}}{\partial x_{j}}(\mathbf{a},\mathbf{b}) + b_{j}\frac{\partial H^{(R)}}{\partial y_{j}}(\mathbf{a},\mathbf{b}) - \lambda_{R} = 0 \qquad j = 1,...,n\\ a_{j}\frac{\partial H^{(I)}}{\partial x_{j}}(\mathbf{a},\mathbf{b}) + b_{j}\frac{\partial H^{(I)}}{\partial y_{j}}(\mathbf{a},\mathbf{b}) - \lambda_{I} = 0 \qquad j = 1,...,n\\ H^{(R)}(\mathbf{x},\mathbf{y}) &= H^{(I)}(\mathbf{x},\mathbf{y}) = 0\\ x_{j}^{2} + y_{j}^{2} - t(a_{j}^{2} + b_{j}^{2}) = 0 \qquad j = 1,...,n\\ (y_{j} - \nu x_{j})\frac{\partial H^{(R)}}{\partial x_{i}}(\mathbf{x},\mathbf{y}) - (x_{j} + \nu y_{j})\frac{\partial H^{(R)}}{\partial y_{i}}(\mathbf{x},\mathbf{y}) = 0 \qquad j = 1,...,n \end{aligned}$$

- Geometric understanding of (\star)
 - What is degree for generic H?
- (\star) Numerical techniques for (\star)
 - How to improve the performance of monodromy?
 - Solving equation-by-equation
 (i.e. regeneration)
 - How to verify the completeness?

Thank you for your attention

The paper is available at (<u>https://arxiv.org/pdf/2208.04490.pdf</u>)

