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oH oH . .
H z;— — 4, ...,z,— — A, H(tz,, ..., tz)| . If & is not finite,
] aZl aZn
then FAIL.

2. Construct the subset points (€, A4, 1) € & which are
candidates for minimal critical poinfts.

» Z1s minimal If and only If the line segment
{@lzl,....tlz,]) | 0 <t < 1} doesnt
infersect 7.

3. Identify ¢ among the elements of & (critical points
Abs on 7).

4. Return
U ={zecC"||z|=II,....12,| =|¢,| forsome (z,1) € €}

ACSV for non-combinatonal

1. Determine the set & of zeros

CdSe

(a,b,X,y, Ay, 4/, U, t) of the system ( ). If &

Is not finite, then FAIL.

2. Construct the set of minimal crifical points
%:={a+ib|(@b,xy g4 v,0) € Sp €01} CS

3. WU =@Qordz=4;,=00r

he elemen

do not all belong to the same

s of U

‘arus, then

CAIL.

4. |dentify elements of % from € and return them.



ACSVHomotopy.jl (L.-Melczer-Smolcic 2022)

. |mp|emen'|'ed using » Competitive to other ACSV software
HomotopyContinuation.jl for combinatorial cases.
(Breiding-Timme 2018) - Solve the critical-point equations

using the polyhedral homotopy

» The first software of ACSV for non-
combinatorial cases.

» Avallable af
github.com/ACSVMath/ACSVHomotopy

- Solve the decomposed crifical-point
equations ( % ) using the
polyhedral homotopy

- Provide faster heuristics including
the monodromy method.


http://github.com/ACSVMath/ACSVHomotopy

Implementation details

The polyhedral homotopy Is the default
for solving critical point equations.

 Returns reliable results via interval
arithmetic certification.

» Effective for combinatorial case
compared to other software based
on symbolic algorithm.

» May be slow for non-combinatorial.

- Faster heuristics used.



Implementation details

The polyhedral homotopy Is the default
for solving critical point equations.

 Returns reliable results via interval
arithmetic certification.

» Effective for combinatorial case
compared to other software based
on symbolic algorithm.

» May be slow for non-combinatorial.

- Faster heuristics used.



Implementation details

Heuristics for non-combinatorial case.

H®@a,b) = HY(a,b) = 0

OH® OH® |
J J

oH"D oH" ,
J J

H®(x,y) = HY(x,y) = 0
2 2 2\ — ;

oH®) oH®)

(X,y) — (x; +vy)
a.Xj Y ! ay]

;- vx) xy=0 j=1..

(%)



Implementation details

Heuristics for non-combinatorial case. 1. Approximating critical points

H®@a,b) = HY(a,b) = 0

GH(R)( b)+ b OH(R)( b)—1,=0 =]
a a, : a,b)— A1, = =1,....n
/ 0x; / 0y; K /
oHD oHD .
CZ] (a,b)‘l‘b] (a,b)—/11=0 J = 1,...,71

0%; 0y (%)
H®(x,y) = HO(x,y) = 0
2 2 2\ _ .

oH®) oH®)

(X,y) — (x; +vy)
a.Xj Y ! ay]

(y; — vx;) (x,y) =0 j=1,...,n



Implementation details

Heuristics for non-combinatorial case.

H®a,b) = HD(a,b) = 0

HE b+ 5.2 by — 2 = 0
d, I : d, — —

a.Xj Y ayj K
oHD oHD
(a,b) +b,

H®(x,y) = H'(x,y) = 0
2 2 2\

oH® oH®
(X,y) = (0 + vy)

a4

(a,b) — 4, =0

4

x,y) =0

(y; — vx))

(A)

(B)

1.

Approximating critical points



Implementation details

Heuristics for non-combinatorial case. 1. Approximating critical points

« Solve the subsystem (A) to get

H®a,b) = H (a,b) = 0

oH® oH® | . L

G @D T @ k=0 = len| an approximation of (a, b).
oH" oH"

a; (a,b)+bj (a,b)—4,=0 j=1,....n

H®(x,y) = H"(x,y) =0
2 2 2\ o
xj+yj—t(aj2+bj)—0 j=1,...,n

oH®) oH®)
(X,y) — (% +vy))

(B)

x,y)=0 j=1,..n

(y; — vx))



Implementation details

Heuristics for non-combinatorial case. 1. Approximating critical points

« Solve the subsystem (A) to get

H®(a,b) = H(a,b) = 0

(R) (R) : -
@) 45 @b) g =0 j=1l...n an approximation of (a, b).
o; 9 (A)
() () o - : :
o by 45 @by =y =0 =L Using the approximations, solve
ox; dy;
H®x,y) = HO(x,y) = 0 The SUbSUSTem (B)
x?+yi—i(a2+b)=0  j=1,...n .
oH® oH®)

(x,y) =0 j=1,...,n

(X,) = (x; + vy)

;= vxy)
) Y dx] 0)/]



Implementation details

Heuristics for non-combinatorial case. 2. Monodromy

« Solve the subsystem (A) to get an

H®(a,b) = H(a,b) = 0

oH®™) oH™ | : -

G @D T @b =4 =0 =] approximation of (a, b).
oHW oH"

a. (a,b) + b, (a,b)—4,=0 j=1,...,n

/) ax] Y ay] !

H®(x,y) = H (x,y) = 0
2 2 2y :
xj+yj—t(aj2+bj)—() j=1,...,n

oH®) oH®)
(X,y) — (% +vy))

(B)

x,y)=0 j=1,..n

(y; — vx))



Implementation details

Heuristics for non-combinatorial case.

H®a,b) = HD(a,b) = 0

HE b+ 5.2 by — 2 = 0
d, I : d, — —
a.Xj Y ayj K
oHD oHD

(a,b) + b,

H®(x,y) = H)(x,y) = 0
2 2 A

oH®) oH®)
(X,y) — (% +vy))

a4

(@,b)— 4, =0

4

x,y) =0

(y; — vx))

(A)

(B)

2. Monodromy
« Solve the subsystem (A) to get an
approximation of (a, b).

 Solve the subsystem (B) using
monodromy with (X, y, 7)) = (a, b,1).



Implementation details

Heuristics for non-combinatorial case.

H®a,b) = HD(a,b) = 0

HE b+ 5.2 by — 2 = 0
d, I : d, — —
a.Xj Y ayj K
oHD oHD

(a,b) +b,

H®(x,y) = H'(x,y) = 0
2 2 2\

oH®) oH®)
(X,y) — (% +vy))

a4

(@,b)— 4, =0

4

(y; — vx) x,y) =0
) d a.x] 0)/]

(A)

(B)

2. Monodromy

Solve the subsystem (A) to get an
approximation of (a, b).

Solve the subsystem (B) using
monodromy with (X, y, 7)) = (a, b,1).

Caveat : the subsystem (B) may have

several irreducible components. (Fall
to find all critical points)



Experiments : Combinatorial examples

Ex | , ,
N square-root Apéry ((2) Apéry {(3) Random 3D Walk

ACSVHomotopy.jl 0.01 0.025 0.7 0.9 0.08

Maple implementation 0.06 0.06 0.3 840 2.7



Experiments : Combinatorial examples

EX I z
M square-root Apery {(2)
ACSVHomotopy.jl 0.01 0.025
Maple implementation 0.06 0.06

Experiments : Non-combinatorial examples

M square-root Apéry ((2)
Polyhedral homotopy 29.5 670
Approximating Crits 0.72 3.8

Monodromy 14.9 8.5

INC indicates the code did not complete after running for an hour.

Apery {(3)

0.7

0.3

2D Walk

INC

15.3

31.9

Random

0.9

340

GRZ

236

3.6

3.8

3D Walk

0.08

2.1

Random

INC

189.4

583.1



Future directions

_ _ : '
H®(a,b) = H (a,b) = 0 « Geometric understanding of ( % )

oH® oH® ,
a; ™ (a,b)+bj . (a,b)—4,=0 j=1,...,n | _
f g - What is degree for generic H ?
oHD oHD .
a; ™ (a,b)+bj . (a,b)—4,=0 j=1,...,n _ _
j 0] (*)« Numerical techniques for ( % )
H®(x,y) = HO(x,y) =0 |
4y —ta2+bH =0  j=1,..n - How to improve the performance
oH®) oH®)
0j = )5 =W = () — =) =0 j=loeen of monodromy?
J J

- Solving equation-by-equation
(1.e. regeneration)

* How to verify the completeness?



Thank you for your attention

The paper is available at
(https://arxiv.org/pdf/2208.04490.pdf)



https://arxiv.org/pdf/2208.04490.pdf

