Isolating clusters of zeros using arbitrary-degree inflation

Joint work with Michael Burr and Anton Leykin

Kisun Lee (UC San Diego) - kil004@ucsd.edu

The International Symposium on Symbolic and Algebraic Computation 2023

 \mathcal{F} : a system of analytic functions

 $z^* \in \mathbb{C}^n$: a point approximating zeros of \mathcal{F}

The zero cluster isolation problem is to compute two regions R_- and R_+ , and a positive integer c such that

- 1) $z^* \in R_- \subseteq R_+^\circ$
- 2) The number of zeros of \mathcal{F} in both regions are equals c

 \mathcal{F} : a system of analytic functions

 $z^* \in \mathbb{C}^n$: a point approximating zeros of \mathcal{F}

The **zero cluster isolation problem** is to compute two regions R_- and R_+ , and a positive integer c such that

- 1) $z^* \in R_- \subseteq R_+^\circ$
- 2) The number of zeros of \mathcal{F} in both regions are equals c

 \mathcal{F} : a system of analytic functions

 $z^* \in \mathbb{C}^n$: a point approximating zeros of \mathcal{F}

The zero cluster isolation problem is to compute two regions R_{-} and R_{+} , and a positive integer c such that

- 1) $z^* \in R_- \subseteq R_+^{\circ}$
- 2) The number of zeros of \mathcal{F} in both regions are equals c

 \mathcal{F} : a system of analytic functions

 $z^* \in \mathbb{C}^n$: a point approximating zeros of \mathcal{F}

The zero cluster isolation problem is to compute two regions R_{-} and R_{+} , and a positive integer c such that

- 1) $z^* \in R_- \subseteq R_+^{\circ}$
- 2) The number of zeros of ${\mathcal F}$ in both regions are equals c

- Solving a system with a multiple zero using a numerical solver generates a cluster of zeros
- $R_{\rm }$ tightly encloses the cluster
- R_+ separates the cluster with other zeros of ${\mathcal F}$

- Solving a system with a multiple zero using a numerical solver generates a cluster of zeros
- $R_{\rm }$ tightly encloses the cluster
- R_+ separates the cluster with other zeros of ${\mathcal F}$

- Solving a system with a multiple zero using a numerical solver generates a cluster of zeros
- R_{-} tightly encloses the cluster
- R_+ separates the cluster with other zeros of ${\mathcal F}$

- Solving a system with a multiple zero using a numerical solver generates a cluster of zeros
- R_{-} tightly encloses the cluster
- R_+ separates the cluster with other zeros of ${\mathcal F}$

Cluster isolation using inflation

Algorithmic method

Computing R_-, R_+ and c algorithmically from a given input

Certified method

Proving the correctness of R_- , R_+ and c (not only computing them)

Counterintuitive

Inflating the multiplicity of the zero

Cluster isolation using inflation

Algorithmic method

Computing R_-, R_+ and c algorithmically from a given input

Certified method

Proving the correctness of R_-, R_+ and c (not only computing them)

Counterintuitive

Inflating the multiplicity of the zero

Cluster isolation using inflation

Algorithmic method

Computing R_-, R_+ and c algorithmically from a given input

Certified method

Proving the correctness of R_-, R_+ and c (not only computing them)

Counterintuitive

Inflating the multiplicity of the zero

Rouché's theorem

Two holomorphic functions \mathscr{P} and \mathscr{Q} on a region R with closed ∂R , if $\|\mathscr{P}(x) - \mathscr{Q}(x)\| \leq \|\mathscr{Q}(x)\|$ on ∂R , then \mathscr{P} and \mathscr{Q} have the same number of zeros in R° .

(Cluster Isolation using Rouché's theorem)
Dedieu-Shub 2001, Hao-Jiang-Li-Zhi 2020,
Burr-Leykin 2021

Q. What T and Q should be to apply Rouché's theorem?

Rouché's theorem

Two holomorphic functions \mathscr{P} and \mathscr{Q} on a region R with closed ∂R , if $\|\mathscr{P}(x) - \mathscr{Q}(x)\| \leq \|\mathscr{Q}(x)\|$ on ∂R , then \mathscr{P} and \mathscr{Q} have the same number of zeros in R° .

(Cluster Isolation using Rouché's theorem)
Dedieu-Shub 2001, Hao-Jiang-Li-Zhi 2020,
Burr-Leykin 2021

Q. What T and Q should be to apply Rouché's theorem?

Rouché's theorem

Two holomorphic functions \mathscr{P} and \mathscr{Q} on a region R with closed ∂R , if $\|\mathscr{P}(x) - \mathscr{Q}(x)\| \leq \|\mathscr{Q}(x)\|$ on ∂R , then \mathscr{P} and \mathscr{Q} have the same number of zeros in R° .

(Cluster Isolation using Rouché's theorem)
Dedieu-Shub 2001, Hao-Jiang-Li-Zhi 2020,
Burr-Leykin 2021

Q. What \mathcal{P} and \mathcal{Q} should be to apply Rouché's theorem?

$$\mathcal{P} = \left\{ \begin{array}{c} x_1^2 + x_2^3 \\ x_2^2 + x_1^3 \end{array} \right\} \text{ and } \mathcal{Q} = \left\{ \begin{array}{c} x_1^2 \\ x_2^2 \end{array} \right\}.$$

- Q has a zero at the origin of multiplicity 4.
- $\|\mathscr{P}(x) \mathscr{Q}(x)\| \le \|\mathscr{Q}(x)\|$ on \mathbb{S}_{ε} (an ε -sphere) for $0 < \varepsilon \le 1$.

It confirms the multiplicity 4 at the origin of \mathcal{P} .

$$\mathcal{P} = \left\{ \begin{array}{c} x_1^2 + x_2^3 \\ x_2^2 + x_1^3 \end{array} \right\} \text{ and } \mathcal{Q} = \left\{ \begin{array}{c} x_1^2 \\ x_2^2 \end{array} \right\}.$$

- Q has a zero at the origin of multiplicity 4.
- $\|\mathscr{P}(x) \mathscr{Q}(x)\| \le \|\mathscr{Q}(x)\|$ on \mathbb{S}_{ε} (an ε -sphere) for $0 < \varepsilon \le 1$.

It confirms the multiplicity 4 at the origin of \mathcal{P} .

$$\mathcal{P} = \left\{ \frac{x_1^2 + x_2^3}{x_2^2 + x_1^3} \right\} \text{ and } \mathcal{Q} = \left\{ \frac{x_1^2}{x_2^2} \right\}.$$

- Q has a zero at the origin of multiplicity 4.
- $\|\mathcal{P}(x) \mathcal{Q}(x)\| \le \|\mathcal{Q}(x)\|$ on \mathbb{S}_{ε} (an ε -sphere) for $0 < \varepsilon \le 1$.

It confirms the multiplicity 4 at the origin of \mathcal{P} .

$$\mathcal{P} = \left\{ \begin{cases} x_1^2 + x_2^3 \\ x_2^2 + x_1^3 \end{cases} \right\} \text{ and } \mathcal{Q} = \left\{ \begin{cases} x_1^2 \\ x_2^2 \end{cases} \right\}.$$

- \mathcal{Q} has a zero at the origin of multiplicity 4.
- $\|\mathscr{P}(x) \mathscr{Q}(x)\| \le \|\mathscr{Q}(x)\|$ on \mathbb{S}_{ε} (an ε -sphere) for $0 < \varepsilon \le 1$.

It confirms the multiplicity 4 at the origin of \mathscr{P} .

$$\mathcal{P} = \left\{ \begin{array}{l} x_1^2 + x_2^3 \\ x_2^2 + x_1^3 \end{array} \right\} \text{ and } \mathcal{Q} = \left\{ \begin{array}{l} x_1^2 \\ x_2^2 \end{array} \right\}.$$

- \mathcal{Q} has a zero at the origin of multiplicity 4.
- $\|\mathscr{P}(x) \mathscr{Q}(x)\| \le \|\mathscr{Q}(x)\|$ on \mathbb{S}_{ε} (an ε -sphere) for $0 < \varepsilon \le 1$.

It confirms the multiplicity 4 at the origin of \mathscr{P} .

$$\mathcal{G} = \left\{ \begin{array}{l} 2x_1 + x_2 + x_1^2 \\ 8x_1 + 4x_2 + x_2^2 \end{array} \right\} \text{ with } z^* = (0,0)$$

1. Apply
$$\mathcal{A} = \mathcal{G} \circ A = \begin{cases} \sqrt{5}x_2 + \frac{x_1^2}{5} + \frac{4x_1x_2}{5} + \frac{4x_2^2}{5} \\ 4\sqrt{5}x_2 + \frac{4x_1^2}{5} - \frac{4x_1x_2}{5} + \frac{x_2^2}{5} \end{cases}$$

where
$$A = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$

Making Jacobian from
$$\begin{pmatrix} 2 & 1 \\ 8 & 4 \end{pmatrix}$$
 to $\begin{pmatrix} 0 & \sqrt{5} \\ 0 & 4\sqrt{5} \end{pmatrix}$

$$\mathcal{G} = \left\{ \begin{cases} 2x_1 + x_2 + x_1^2 \\ 8x_1 + 4x_2 + x_2^2 \end{cases} \text{ with } z^* = (0,0)$$

1. Apply
$$\mathcal{A} = \mathcal{G} \circ A = \begin{cases} \sqrt{5}x_2 + \frac{x_1^2}{5} + \frac{4x_1x_2}{5} + \frac{4x_2^2}{5} \\ 4\sqrt{5}x_2 + \frac{4x_1^2}{5} - \frac{4x_1x_2}{5} + \frac{x_2^2}{5} \end{cases}$$

where
$$A = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$

Making Jacobian from
$$\begin{pmatrix} 2 & 1 \\ 8 & 4 \end{pmatrix}$$
 to $\begin{pmatrix} 0 & \sqrt{5} \\ 0 & 4\sqrt{5} \end{pmatrix}$

$$\mathcal{G} = \left\{ \frac{2x_1 + x_2 + x_1^2}{8x_1 + 4x_2 + x_2^2} \right\} \text{ with } z^* = (0,0)$$

1. Apply
$$\mathcal{A} = \mathcal{G} \circ A = \begin{cases} \sqrt{5}x_2 + \frac{x_1^2}{5} + \frac{4x_1x_2}{5} + \frac{4x_2^2}{5} \\ 4\sqrt{5}x_2 + \frac{4x_1^2}{5} - \frac{4x_1x_2}{5} + \frac{x_2^2}{5} \end{cases}$$

where
$$A = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$

Making Jacobian from
$$\begin{pmatrix} 2 & 1 \\ 8 & 4 \end{pmatrix}$$
 to $\begin{pmatrix} 0 & \sqrt{5} \\ 0 & 4\sqrt{5} \end{pmatrix}$

$$\mathcal{G} = \left\{ \frac{2x_1 + x_2 + x_1^2}{8x_1 + 4x_2 + x_2^2} \right\} \text{ with } z^* = (0,0)$$

1. Apply
$$\mathscr{A} = \mathscr{G} \circ A = \begin{cases} \sqrt{5}x_2 + \frac{x_1^2}{5} + \frac{4x_1x_2}{5} + \frac{4x_2^2}{5} \\ 4\sqrt{5}x_2 + \frac{4x_1^2}{5} - \frac{4x_1x_2}{5} + \frac{x_2^2}{5} \end{cases}$$

where
$$A = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$

Making Jacobian from
$$\begin{pmatrix} 2 & 1 \\ 8 & 4 \end{pmatrix}$$
 to $\begin{pmatrix} 0 & \sqrt{5} \\ 0 & 4\sqrt{5} \end{pmatrix}$

$$\mathscr{A} = \mathscr{G} \circ A = \begin{cases} \sqrt{5}x_2 + \frac{x_1^2}{5} + \frac{4x_1x_2}{5} + \frac{4x_2^2}{5} \\ 4\sqrt{5}x_2 + \frac{4x_1^2}{5} - \frac{4x_1x_2}{5} + \frac{x_2^2}{5} \end{cases}$$

2. Apply
$$\mathscr{B} = B \circ \mathscr{A} = \begin{cases} x_1 x_2 + \frac{3x_2^2}{4} \\ x_2 + \frac{x_1^2}{5\sqrt{5}} - \frac{x_1 x_2}{5\sqrt{5}} + \frac{x_2^2}{20\sqrt{5}} \end{cases}$$

where
$$B = \begin{pmatrix} 1 & -\frac{1}{4} \\ 0 & \frac{1}{4\sqrt{5}} \end{pmatrix}$$

Making Jacobian from
$$\begin{pmatrix} 0 & \sqrt{5} \\ 0 & 4\sqrt{5} \end{pmatrix}$$
 to $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

$$\mathscr{A} = \mathscr{G} \circ A = \begin{cases} \sqrt{5}x_2 + \frac{x_1^2}{5} + \frac{4x_1x_2}{5} + \frac{4x_2^2}{5} \\ 4\sqrt{5}x_2 + \frac{4x_1^2}{5} - \frac{4x_1x_2}{5} + \frac{x_2^2}{5} \end{cases}$$

2. Apply
$$\mathscr{B} = B \circ \mathscr{A} = \left\{ \begin{array}{l} x_1 x_2 + \frac{3x_2^2}{4} \\ x_2 + \frac{x_1^2}{5\sqrt{5}} - \frac{x_1 x_2}{5\sqrt{5}} + \frac{x_2^2}{20\sqrt{5}} \end{array} \right\}$$

where
$$B = \begin{pmatrix} 1 & -\frac{1}{4} \\ 0 & \frac{1}{4\sqrt{5}} \end{pmatrix}$$

Making Jacobian from
$$\begin{pmatrix} 0 & \sqrt{5} \\ 0 & 4\sqrt{5} \end{pmatrix}$$
 to $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

$$\mathscr{A} = \mathscr{G} \circ A = \begin{cases} \sqrt{5}x_2 + \frac{x_1^2}{5} + \frac{4x_1x_2}{5} + \frac{4x_2^2}{5} \\ 4\sqrt{5}x_2 + \frac{4x_1^2}{5} - \frac{4x_1x_2}{5} + \frac{x_2^2}{5} \end{cases}$$

2. Apply
$$\mathscr{B} = B \circ \mathscr{A} = \left\{ \begin{array}{l} x_1 x_2 + \frac{3x_2^2}{4} \\ x_2 + \frac{x_1^2}{5\sqrt{5}} - \frac{x_1 x_2}{5\sqrt{5}} + \frac{x_2^2}{20\sqrt{5}} \end{array} \right\}$$

where
$$B = \begin{pmatrix} 1 & -\frac{1}{4} \\ 0 & \frac{1}{4\sqrt{5}} \end{pmatrix}$$

Making Jacobian from
$$\begin{pmatrix} 0 & \sqrt{5} \\ 0 & 4\sqrt{5} \end{pmatrix}$$
 to $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

$$\mathcal{B} = B \circ \mathcal{A} = \begin{cases} x_1 x_2 + \frac{3x_2^2}{4} \\ x_2 + \frac{x_1^2}{5\sqrt{5}} - \frac{x_1 x_2}{5\sqrt{5}} + \frac{x_2^2}{20\sqrt{5}} \end{cases}$$

3. Apply

$$\mathcal{C}_{3} = C_{3} \circ \mathcal{B} = \begin{cases} x_{1}^{3} + \frac{x_{1}^{4}}{20\sqrt{5}} + \frac{x_{1}^{3}x_{2}}{20\sqrt{5}} - \frac{x_{1}^{2}x_{2}^{2}}{8\sqrt{5}} + \frac{x_{1}x_{2}^{3}}{16\sqrt{5}} - \frac{3x_{2}^{4}}{320\sqrt{5}} \\ x_{2} + \frac{x_{1}^{2}}{5\sqrt{5}} - \frac{x_{1}x_{2}}{5\sqrt{5}} + \frac{x_{2}^{2}}{20\sqrt{5}} \end{cases}$$

where
$$C_3 = \begin{pmatrix} -5\sqrt{5} & 5\sqrt{5}x_1 + \frac{15\sqrt{5}x_2}{4} + \frac{x_1^2}{4} + \frac{x_1x_2}{4} + \frac{3x_2^2}{2} - \frac{3x_2^2}{16} \end{pmatrix}$$

Canceling x_1x_2 term in the first equation.

$$\mathcal{B} = B \circ \mathcal{A} = \begin{cases} x_1 x_2 + \frac{3x_2^2}{4} \\ x_2 + \frac{x_1^2}{5\sqrt{5}} - \frac{x_1 x_2}{5\sqrt{5}} + \frac{x_2^2}{20\sqrt{5}} \end{cases}$$

3. Apply

$$\mathcal{C}_{3} = C_{3} \circ \mathcal{B} = \begin{cases} x_{1}^{3} + \frac{x_{1}^{4}}{20\sqrt{5}} + \frac{x_{1}^{3}x_{2}}{20\sqrt{5}} - \frac{x_{1}^{2}x_{2}^{2}}{8\sqrt{5}} + \frac{x_{1}x_{2}^{3}}{16\sqrt{5}} - \frac{3x_{2}^{4}}{320\sqrt{5}} \\ x_{2} + \frac{x_{1}^{2}}{5\sqrt{5}} - \frac{x_{1}x_{2}}{5\sqrt{5}} + \frac{x_{2}^{2}}{20\sqrt{5}} \end{cases}$$

where
$$C_3 = \begin{pmatrix} -5\sqrt{5} & 5\sqrt{5}x_1 + \frac{15\sqrt{5}x_2}{4} + \frac{x_1^2}{4} + \frac{x_1x_2}{4} + \frac{3x_2^2}{2} - \frac{3x_2^2}{16} \end{pmatrix}$$

Canceling x_1x_2 term in the first equation.

$$\mathcal{B} = B \circ \mathcal{A} = \begin{cases} x_1 x_2 + \frac{3x_2^2}{4} \\ x_2 + \frac{x_1^2}{5\sqrt{5}} - \frac{x_1 x_2}{5\sqrt{5}} + \frac{x_2^2}{20\sqrt{5}} \end{cases}$$

3. Apply

$$\mathcal{C}_{3} = C_{3} \circ \mathcal{B} = \begin{cases} x_{1}^{3} + \frac{x_{1}^{4}}{20\sqrt{5}} + \frac{x_{1}^{3}x_{2}}{20\sqrt{5}} - \frac{x_{1}^{2}x_{2}^{2}}{8\sqrt{5}} + \frac{x_{1}x_{2}^{3}}{16\sqrt{5}} - \frac{3x_{2}^{4}}{320\sqrt{5}} \\ x_{2} + \frac{x_{1}^{2}}{5\sqrt{5}} - \frac{x_{1}x_{2}}{5\sqrt{5}} + \frac{x_{2}^{2}}{20\sqrt{5}} \end{cases}$$

where
$$C_3 = \begin{pmatrix} -5\sqrt{5} & 5\sqrt{5}x_1 + \frac{15\sqrt{5}x_2}{4} + \frac{x_1^2}{4} + \frac{x_1x_2}{4} - \frac{3x_2^2}{16} \\ 0 & 1 \end{pmatrix}$$

Canceling x_1x_2 term in the first equation.

$$\mathcal{B} = B \circ \mathcal{A} = \left\{ \begin{array}{c} x_1 x_2 + \frac{3x_2^2}{4} \\ x_2 + \frac{x_1^2}{5\sqrt{5}} - \frac{x_1 x_2}{5\sqrt{5}} + \frac{x_2^2}{20\sqrt{5}} \end{array} \right\}$$

3. Apply

$$\mathcal{C}_{3} = C_{3} \circ \mathcal{B} = \begin{cases} x_{1}^{3} + \frac{x_{1}^{4}}{20\sqrt{5}} + \frac{x_{1}^{3}x_{2}}{20\sqrt{5}} - \frac{x_{1}^{2}x_{2}^{2}}{8\sqrt{5}} + \frac{x_{1}x_{2}^{3}}{16\sqrt{5}} - \frac{3x_{2}^{4}}{320\sqrt{5}} \\ x_{2} + \frac{x_{1}^{2}}{5\sqrt{5}} - \frac{x_{1}x_{2}}{5\sqrt{5}} + \frac{x_{2}^{2}}{20\sqrt{5}} \end{cases}$$

where
$$C_3 = \begin{pmatrix} -5\sqrt{5} & 5\sqrt{5}x_1 + \frac{15\sqrt{5}x_2}{4} + \frac{x_1^2}{4} + \frac{x_1x_2}{4} - \frac{3x_2^2}{16} \\ 0 & 1 \end{pmatrix}$$

Canceling x_1x_2 term in the first equation.

$$\mathscr{C}_{3} = C_{3} \circ \mathscr{B} = \begin{cases} x_{1}^{3} + \frac{x_{1}^{4}}{20\sqrt{5}} + \frac{x_{1}^{3}x_{2}}{20\sqrt{5}} - \frac{x_{1}^{2}x_{2}^{2}}{8\sqrt{5}} + \frac{x_{1}x_{2}^{3}}{16\sqrt{5}} - \frac{3x_{2}^{4}}{320\sqrt{5}} \\ x_{2} + \frac{x_{1}^{2}}{5\sqrt{5}} - \frac{x_{1}x_{2}}{5\sqrt{5}} + \frac{x_{2}^{2}}{20\sqrt{5}} \end{cases}$$

4. Replace x_2 by $x_2 - \frac{x_1^2}{5\sqrt{5}} - \frac{x_1^3}{125}$ to make

$$\mathcal{P}_{3,3} = \mathcal{C}_3 \circ D_3 = \begin{cases} x_1^3 + \frac{x_1^4}{20\sqrt{5}} + \frac{x_1^3 x_2}{20\sqrt{5}} - \frac{x_1^2 x_2^2}{8\sqrt{5}} + \frac{x_1 x_2^3}{16\sqrt{5}} + \dots \\ x_2 - \frac{x_1 x_2}{5\sqrt{5}} + \frac{x_2^2}{20\sqrt{5}} - \frac{x_1^2 x_2}{250} + \frac{x_1^4}{500\sqrt{5}} + \dots \end{cases}$$

Deleting some terms to **inflate** x_2 term

We call $\mathcal{P}_{3,3}$ a pre-inflatable system

$$\mathscr{C}_{3} = C_{3} \circ \mathscr{B} = \begin{cases} x_{1}^{3} + \frac{x_{1}^{4}}{20\sqrt{5}} + \frac{x_{1}^{3}x_{2}}{20\sqrt{5}} - \frac{x_{1}^{2}x_{2}^{2}}{8\sqrt{5}} + \frac{x_{1}x_{2}^{3}}{16\sqrt{5}} - \frac{3x_{2}^{4}}{320\sqrt{5}} \\ x_{2} + \frac{x_{1}^{2}}{5\sqrt{5}} - \frac{x_{1}x_{2}}{5\sqrt{5}} + \frac{x_{2}^{2}}{20\sqrt{5}} \end{cases}$$

4. Replace x_2 by $x_2 - \frac{x_1^2}{5\sqrt{5}} - \frac{x_1^3}{125}$ to make

$$\mathcal{P}_{3,3} = \mathcal{C}_3 \circ D_3 = \begin{cases} x_1^3 + \frac{x_1^4}{20\sqrt{5}} + \frac{x_1^3 x_2}{20\sqrt{5}} - \frac{x_1^2 x_2^2}{8\sqrt{5}} + \frac{x_1 x_2^3}{16\sqrt{5}} + \dots \\ x_2 - \frac{x_1 x_2}{5\sqrt{5}} + \frac{x_2^2}{20\sqrt{5}} - \frac{x_1^2 x_2}{250} + \frac{x_1^4}{500\sqrt{5}} + \dots \end{cases}$$

Deleting some terms to **inflate** x_2 term

We call $\mathcal{P}_{3,3}$ a pre-inflatable system

$$\mathscr{C}_{3} = C_{3} \circ \mathscr{B} = \begin{cases} x_{1}^{3} + \frac{x_{1}^{4}}{20\sqrt{5}} + \frac{x_{1}^{3}x_{2}}{20\sqrt{5}} - \frac{x_{1}^{2}x_{2}^{2}}{8\sqrt{5}} + \frac{x_{1}x_{2}^{3}}{16\sqrt{5}} - \frac{3x_{2}^{4}}{320\sqrt{5}} \\ x_{2} + \frac{x_{1}^{2}}{5\sqrt{5}} - \frac{x_{1}x_{2}}{5\sqrt{5}} + \frac{x_{2}^{2}}{20\sqrt{5}} \end{cases}$$

4. Replace x_2 by $x_2 - \frac{x_1^2}{5\sqrt{5}} - \frac{x_1^3}{125}$ to make

$$\mathcal{P}_{3,3} = \mathcal{C}_3 \circ D_3 = \begin{cases} x_1^3 + \frac{x_1^4}{20\sqrt{5}} + \frac{x_1^3 x_2}{20\sqrt{5}} - \frac{x_1^2 x_2^2}{8\sqrt{5}} + \frac{x_1 x_2^3}{16\sqrt{5}} + \dots \\ x_2 - \frac{x_1 x_2}{5\sqrt{5}} + \frac{x_2^2}{20\sqrt{5}} - \frac{x_1^2 x_2}{250} + \frac{x_1^4}{500\sqrt{5}} + \dots \end{cases}$$

Deleting some terms to **inflate** x_2 term

We call $\mathcal{P}_{3,3}$ a pre-inflatable system

$$\mathcal{P}_{3,3} = \mathcal{C}_3 \circ D_3 = \begin{cases} x_1^3 + \frac{x_1^4}{20\sqrt{5}} + \frac{x_1^3 x_2}{20\sqrt{5}} - \frac{x_1^2 x_2^2}{8\sqrt{5}} + \frac{x_1 x_2^3}{16\sqrt{5}} + \dots \\ x_2 - \frac{x_1 x_2}{5\sqrt{5}} + \frac{x_2^2}{20\sqrt{5}} - \frac{x_1^2 x_2}{250} + \frac{x_1^4}{500\sqrt{5}} + \dots \end{cases}$$

5. Applying the **inflation operator** S_1^3 to replace x_2 by x_2^3 to make

$$\mathscr{P} = \mathscr{P}_{3,3} \cdot S_1^3 = \left\{ \begin{array}{c} +\frac{x_1^4}{20\sqrt{5}} - \frac{x_1^5}{500} - \frac{7x_1^6}{5000\sqrt{5}} + \frac{x_1^3x_2^3}{20\sqrt{5}} + \cdots \\ +\frac{x_1^4}{500\sqrt{5}} - \frac{x_1x_2^3}{5\sqrt{5}} + \frac{x_1^5}{31250} - \frac{x_1^2x_2^3}{250} + \cdots \end{array} \right\}$$

Setting
$$Q = \begin{Bmatrix} x_1^3 \\ x_2^3 \end{Bmatrix}$$
 and apply Rouché's Theorem

$$\mathcal{P}_{3,3} = \mathcal{C}_3 \circ D_3 = \begin{cases} x_1^3 + \frac{x_1^4}{20\sqrt{5}} + \frac{x_1^3 x_2}{20\sqrt{5}} - \frac{x_1^2 x_2^2}{8\sqrt{5}} + \frac{x_1 x_2^3}{16\sqrt{5}} + \dots \\ x_2 - \frac{x_1 x_2}{5\sqrt{5}} + \frac{x_2^2}{20\sqrt{5}} - \frac{x_1^2 x_2}{250} + \frac{x_1^4}{500\sqrt{5}} + \dots \end{cases}$$

5. Applying the **inflation operator** S_1^3 to replace x_2 by x_2^3 to make

$$\mathscr{P} = \mathscr{P}_{3,3} \circ S_1^3 = \begin{cases} x_1^3 + \frac{x_1^4}{20\sqrt{5}} - \frac{x_1^5}{500} - \frac{7x_1^6}{5000\sqrt{5}} + \frac{x_1^3x_2^3}{20\sqrt{5}} + \cdots \\ x_2^3 + \frac{x_1^4}{500\sqrt{5}} - \frac{x_1x_2^3}{5\sqrt{5}} + \frac{x_1^5}{31250} - \frac{x_1^2x_2^3}{250} + \cdots \end{cases}$$

Setting
$$Q = \begin{Bmatrix} x_1^3 \\ x_2^3 \end{Bmatrix}$$
 and apply Rouché's Theorem

$$\mathcal{P}_{3,3} = \mathcal{C}_3 \circ D_3 = \begin{cases} x_1^3 + \frac{x_1^4}{20\sqrt{5}} + \frac{x_1^3 x_2}{20\sqrt{5}} - \frac{x_1^2 x_2^2}{8\sqrt{5}} + \frac{x_1 x_2^3}{16\sqrt{5}} + \dots \\ x_2 - \frac{x_1 x_2}{5\sqrt{5}} + \frac{x_2^2}{20\sqrt{5}} - \frac{x_1^2 x_2}{250} + \frac{x_1^4}{500\sqrt{5}} + \dots \end{cases}$$

5. Applying the **inflation operator** S_1^3 to replace x_2 by x_2^3 to make

$$\mathscr{P} = \mathscr{P}_{3,3} \circ S_1^3 = \begin{cases} x_1^3 + \frac{x_1^4}{20\sqrt{5}} - \frac{x_1^5}{500} - \frac{7x_1^6}{5000\sqrt{5}} + \frac{x_1^3x_2^3}{20\sqrt{5}} + \cdots \\ x_2^3 + \frac{x_1^4}{500\sqrt{5}} - \frac{x_1x_2^3}{5\sqrt{5}} + \frac{x_1^5}{31250} - \frac{x_1^2x_2^3}{250} + \cdots \end{cases}$$

Setting
$$Q = \begin{Bmatrix} x_1^3 \\ x_2^3 \end{Bmatrix}$$
 and apply Rouché's Theorem

$$\mathcal{P}_{3,3} = \mathcal{C}_3 \circ D_3 = \begin{cases} x_1^3 + \frac{x_1^4}{20\sqrt{5}} + \frac{x_1^3 x_2}{20\sqrt{5}} - \frac{x_1^2 x_2^2}{8\sqrt{5}} + \frac{x_1 x_2^3}{16\sqrt{5}} + \dots \\ x_2 - \frac{x_1 x_2}{5\sqrt{5}} + \frac{x_2^2}{20\sqrt{5}} - \frac{x_1^2 x_2}{250} + \frac{x_1^4}{500\sqrt{5}} + \dots \end{cases}$$

5. Applying the **inflation operator** S_1^3 to replace x_2 by x_2^3 to make

$$\mathscr{P} = \mathscr{P}_{3,3} \circ S_1^3 = \begin{cases} x_1^3 + \frac{x_1^4}{20\sqrt{5}} - \frac{x_1^5}{500} - \frac{7x_1^6}{5000\sqrt{5}} + \frac{x_1^3x_2^3}{20\sqrt{5}} + \cdots \\ x_2^3 + \frac{x_1^4}{500\sqrt{5}} - \frac{x_1x_2^3}{5\sqrt{5}} + \frac{x_1^5}{31250} - \frac{x_1^2x_2^3}{250} + \cdots \end{cases}$$

Setting
$$\mathcal{Q} = \left\{ \begin{array}{l} x_1^3 \\ x_2^3 \end{array} \right\}$$
 and apply Rouché's Theorem

$$\mathcal{P}_{3,3} = \mathcal{C}_3 \circ D_3 = \begin{cases} x_1^3 + \frac{x_1^4}{20\sqrt{5}} + \frac{x_1^3 x_2}{20\sqrt{5}} - \frac{x_1^2 x_2^2}{8\sqrt{5}} + \frac{x_1 x_2^3}{16\sqrt{5}} + \dots \\ x_2 - \frac{x_1 x_2}{5\sqrt{5}} + \frac{x_2^2}{20\sqrt{5}} - \frac{x_1^2 x_2}{250} + \frac{x_1^4}{500\sqrt{5}} + \dots \end{cases}$$

5. Applying the **inflation operator** S_1^3 to replace x_2 by x_2^3 to make

$$\mathscr{P} = \mathscr{P}_{3,3} \circ S_1^3 = \begin{cases} x_1^3 + \frac{x_1^4}{20\sqrt{5}} - \frac{x_1^5}{500} - \frac{7x_1^6}{5000\sqrt{5}} + \frac{x_1^3x_2^3}{20\sqrt{5}} + \cdots \\ x_2^3 + \frac{x_1^4}{500\sqrt{5}} - \frac{x_1x_2^3}{5\sqrt{5}} + \frac{x_1^5}{31250} - \frac{x_1^2x_2^3}{250} + \cdots \end{cases}$$

Setting
$$\mathcal{Q} = \left\{ \begin{array}{l} x_1^3 \\ x_2^3 \end{array} \right\}$$
 and apply Rouché's Theorem

It confirms the multiplicity 9 of ${\mathcal P}$ on ${\mathbb S}_{\varepsilon}$ for $0<\varepsilon\leq 1$

Applying Rouché's theorem, $\mathscr P$ has a zero $z^*=(0,0)$ of multiplicity 9 inside the ball $\|x_1\|^2+\|x_2\|^2\leq \varepsilon$ for $0<\varepsilon\leq 1$.

Applying the inverse of each operator, we have the region

$$\frac{1}{5} \left| x_1 - 2x_2 \right|^2 + \frac{1}{5^{1/3}} \left| (2x_1 + x_2) + \frac{(x_1 - 2x_2)^2}{25} + \frac{(x_1 - 2x_2)^3}{625} \right|^{\frac{2}{3}} \le \varepsilon^2$$

It confirms the multiplicity 3 at the origin of \mathcal{G} .

Applying Rouché's theorem, \mathscr{P} has a zero $z^* = (0,0)$ of multiplicity 9 inside the ball $||x_1||^2 + ||x_2||^2 \le \varepsilon$ for $0 < \varepsilon \le 1$.

Applying the inverse of each operator, we have the region

$$\frac{1}{5} \left| x_1 - 2x_2 \right|^2 + \frac{1}{5^{1/3}} \left| (2x_1 + x_2) + \frac{(x_1 - 2x_2)^2}{25} + \frac{(x_1 - 2x_2)^3}{625} \right|^{\frac{2}{3}} \le \varepsilon^2$$

It confirms the multiplicity 3 at the origin of \mathcal{G} .

$$\hat{\mathcal{G}} = \left\{ \frac{2x_1 + x_2 + x_1^2 + 0.001}{8x_1 + 4x_2 + x_2^2 + 0.001} \right\}$$
 with

 $z^* = (-0.0001, -0.0001)$ approximating 3 zeros

Locating z^* at the origin and applying the same transformations result in

$$\hat{\mathcal{G}} = \left\{ \frac{2x_1 + x_2 + x_1^2 + 0.001}{8x_1 + 4x_2 + x_2^2 + 0.001} \right\}$$
 with

 $z^*=(-0.0001,-0.0001)$ approximating 3 zeros Locating z^* at the origin and applying the same transformations result in

$$\begin{cases}
-0.0084 + 0.0013x_1 + 0.000078x_1^2 + x_1^3 + 0.0016x_2^3 + \dots \\
-0.000022 + 0.00002x_1 + 0.000000089x_1^2 + 0.000000008x_1^3 + x_2^3 + \dots
\end{cases}$$

$$\hat{\mathcal{G}} = \left\{ \frac{2x_1 + x_2 + x_1^2 + 0.001}{8x_1 + 4x_2 + x_2^2 + 0.001} \right\}$$
 with

 $z^* = (-0.0001, -0.0001)$ approximating 3 zeros Locating z^* at the origin and applying the same transformations result in

$$\begin{cases}
-0.0084 + 0.0013x_1 + 0.000078x_1^2 + x_1^3 + 0.0016x_2^3 + \dots \\
-0.000022 + 0.00002x_1 + 0.000000089x_1^2 + 0.000000008x_1^3 + x_2^3 + \dots
\end{cases}$$

(cubic parts) ≥ 0.4984 on the unit circle (degree < 3 part) < 0.009757 on the unit circle (degree > 3 part) < 0.2746 on the unit circle Setting the cubic part by @ and apply Rouché's Theorem

$$\hat{\mathcal{G}} = \left\{ \frac{2x_1 + x_2 + x_1^2 + 0.001}{8x_1 + 4x_2 + x_2^2 + 0.001} \right\}$$
 with

 $z^* = (-0.0001, -0.0001)$ approximating 3 zeros

Locating z^* at the origin and applying the same transformations result in

$$\begin{cases}
-0.0084 + 0.0013x_1 + 0.000078x_1^2 + x_1^3 + 0.0016x_2^3 + \dots \\
-0.000022 + 0.00002x_1 + 0.000000089x_1^2 + 0.000000008x_1^3 + x_2^3 + \dots
\end{cases}$$

(cubic parts) ≥ 0.4984 on the unit circle

(degree < 3 part) < 0.009757 on the unit circle

(degree > 3 part) < 0.2746 on the unit circle

Setting the cubic part by ${\mathcal Q}$ and apply Rouché's

Theorem

$$\hat{\mathcal{G}} = \left\{ \begin{cases} 2x_1 + x_2 + x_1^2 + 0.001 \\ 8x_1 + 4x_2 + x_2^2 + 0.001 \end{cases} \right\} \text{ with }$$

 $z^* = (-0.0001, -0.0001)$ approximating 3 zeros

Locating z^* at the origin and applying the same transformations result in

$$\begin{cases}
-0.0084 + 0.0013x_1 + 0.000078x_1^2 + x_1^3 + 0.0016x_2^3 + \dots \\
-0.000022 + 0.00002x_1 + 0.000000089x_1^2 + 0.000000008x_1^3 + x_2^3 + \dots
\end{cases}$$

(cubic parts) ≥ 0.4984 on the unit circle

(degree < 3 part) < 0.009757 on the unit circle

(degree > 3 part) < 0.2746 on the unit circle

Setting the cubic part by ${\mathcal Q}$ and apply Rouché's

Theorem

Applying Rouché's theorem, we may get regions isolating cluster of zeros

The red point depicts the real part of two conjugate imaginary zeros.

Algorithm 1 Pre-inflation construction

Input: A square polynomial system G with a singular zero z^* of breadth κ , and integers d and ℓ .

Output: A (κ, k, ℓ) -pre-inflatable system whose zero at the origin is of the same multiplicity as z^* for \mathcal{G} .

- 1: Apply an affine transformation $A : \mathbb{C}^n \to \mathbb{C}^n$ so that $A(0) = z^*$ and the kernel of the Jacobian of $\mathcal{A} = \mathcal{G} \circ A$ is spanned by the standard basis vectors e_1, \ldots, e_{κ} .
- 2: Apply a linear map $B : \mathbb{C}[x_1, ..., x_n]^n \to \mathbb{C}[x_1, ..., x_n]^n$ to construct the system $\mathcal{B} = B \circ \mathcal{A} = \{b_1, ..., b_n\}$ such that b_i for $i = 1, ..., \kappa$ do not have any linear terms and the linear form of b_i is x_i for $i > \kappa$.
- 3: Apply a linear map $C_k : \mathbb{C}[x_1, \dots, x_n]^n \to \mathbb{C}[x_1, \dots, x_n]^n$ to produce the system $C_k = C_k \circ \mathcal{B} = \{c_1, \dots, c_n\}$ such that the smallest total degree of a term with $x_{\kappa+1}, \dots, x_n$ in c_1, \dots, c_{κ} is greater than k.
- 4: Apply a change of variables D_{ℓ} producing the system $\mathcal{P}_{k,\ell} = C_k \circ D_{\ell} = \{p_1, \dots, p_n\}$ such that the smallest total degree of a term in $p_{\kappa+1}, \dots, p_n$ with only x_1, \dots, x_{κ} is greater than ℓ .

Algorithm 3 Generalized inflation for isolating clusters of zeros

Input: A square polynomial system \mathcal{G} with a cluster of zeros near z^* and $d \in \mathbb{N}$.

Output: A pair of regions R_+ and R_- containing the cluster and no other zeros of \mathcal{G} such that $R_- \subseteq R_+^{\circ}$.

- 1: Construct a singular system \mathcal{G} close to the given system.
- 2: Apply Algorithm 1 with parameters $k = \ell = d$ to \mathcal{G} and collect the two invertible maps U and T applied to \mathcal{G} as $U \circ \mathcal{G} \circ T$.
- 3: Compute \mathcal{H} as in Equation (2).
- 4: Compute a lower bound M on \mathcal{H}_d on the (Hermitian) unit sphere.
- 5: Compute an upper bound M_1 on $\mathcal{H}_{>d}/\|x\|^{d+1}$ on the unit disk.
- 6: Compute an upper bound M_2 on $\mathcal{H}_{< d}$ on the unit disk.

7: Compute
$$\varepsilon_{-} = \left(\frac{2M_2}{M}\right)^{1/d}$$
 and $\varepsilon_{+} = \frac{M}{2M_1}$.

- 8: **if** $\varepsilon_{-} < \varepsilon_{+}$ **then**
- Apply the inverse of $T \circ S_{\kappa}^d$ to the balls of radii ε_- and ε_+ to get the isolating regions R_- and R_+ .

10: **end if**

Both exact and inexact cases, isolation can be done algorithmically

 \mathscr{P} : a square polynomial system such that the origin z^* is an isolated zero with $\kappa = \dim \ker D\mathscr{P}(z^*)$ z^* is called a **regular zero of breadth** κ **and order** d if the Hilbert series for $\langle \mathscr{P} \rangle$ at the origin is $(1+t+\cdots+t^{d-1})^{\kappa}$

 \mathscr{P} : a square polynomial system such that the origin z^* is an isolated zero with $\kappa = \dim \ker D\mathscr{P}(z^*)$ z^* is called a **regular zero of breadth** κ **and order** d if the Hilbert series for $\langle \mathscr{P} \rangle$ at the origin is $(1+t+\cdots+t^{d-1})^{\kappa}$

 $\mathcal{H} = (1,2,3,4,3,2,1)$

the standard monomials form the κ -cube

$$\mathcal{G} = \left\{ \frac{2x_1 + x_2 + x_1^2}{8x_1 + 4x_2 + x_2^2} \right\} \text{ with } z^* = (0,0) \text{ has the Hilbert series}$$

$$1 + t + t^2$$

(A regular zero of breadth 1 and order 3)

$$\mathcal{G} = \begin{cases} x_1 x_2 - x_3^3 \\ x_2 x_3 - x_1^3 \\ x_1 x_3 - x_2^3 \end{cases} \text{ with } z^* = (0,0,0) \text{ has the Hilbert series}$$

$$1 + 3t + 3t^2 + 3t^3 + t^4$$

(Not a regular zero)

$$\mathcal{G} = \left\{ \frac{2x_1 + x_2 + x_1^2}{8x_1 + 4x_2 + x_2^2} \right\} \text{ with } z^* = (0,0) \text{ has the Hilbert series}$$

$$1 + t + t^2$$

(A regular zero of breadth 1 and order 3)

$$\mathcal{G} = \begin{cases} x_1 x_2 - x_3^3 \\ x_2 x_3 - x_1^3 \\ x_1 x_3 - x_2^3 \end{cases} \text{ with } z^* = (0,0,0) \text{ has the Hilbert series}$$

$$1 + 3t + 3t^2 + 3t^3 + t^4$$

(Not a regular zero)

Theorem (Burr-L.-Leykin) Let $\mathcal G$ be a square system in n variables with a regular zero of breadth κ and order d at z^* . Then, there is a locally invertible transformation to a pre-inflatable system $\mathcal G=\{p_1,\ldots,p_n\}$ such that

- (1) The initial degree of each p_i is equal to d for $1 \le i \le \kappa$,
- (2) The initial forms of $p_1, ..., p_k$ do not vanish on the unit sphere in $x_1, ..., x_k$, and
- (3) The initial form of p_i is x_i for $\kappa + 1 \le i \le n$.

$$\mathcal{G} = \begin{cases} x_1 x_2 - x_3^3 \\ x_2 x_3 - x_1^3 \\ x_1 x_3 - x_2^3 \end{cases} \text{ with } z^* = (0,0,0)$$

$$\begin{cases} x_2x_3 - x_1^3 \\ x_1x_3 - x_2^3 \\ x_1x_2 - x_3^3 \\ x_2^4 - x_3^4 \\ x_1^4 - x_2^4 \\ x_3^5 - x_1^3x_2^3 \end{cases}$$

$$\mathcal{G} = \begin{cases} x_1 x_2 - x_3^3 \\ x_2 x_3 - x_1^3 \\ x_1 x_3 - x_2^3 \end{cases} \text{ with } z^* = (0,0,0)$$

$$\begin{cases} x_2x_3 - x_1^3 \\ x_1x_3 - x_2^3 \\ x_1x_2 - x_3^3 \\ x_2^4 - x_3^4 \\ x_1^4 - x_2^4 \\ x_3^5 - x_1^3x_2^3 \end{cases}$$

$$\mathcal{G} = \begin{cases} x_1 x_2 - x_3^3 \\ x_2 x_3 - x_1^3 \\ x_1 x_3 - x_2^3 \end{cases} \text{ with } z^* = (0,0,0)$$

$$\begin{cases} x_2x_3 - x_1^3 \\ x_1x_3 - x_2^3 \\ x_1x_2 - x_3^3 \\ x_2^4 - x_3^4 \\ x_1^4 - x_2^4 \\ x_3^5 - x_1^3x_2^3 \end{cases}$$

$$\mathcal{G} = \begin{cases} x_1 x_2 - x_3^3 \\ x_2 x_3 - x_1^3 \\ x_1 x_3 - x_2^3 \end{cases} \text{ with } z^* = (0,0,0)$$

$$\begin{cases} x_2x_3 - x_1^3 \\ x_1x_3 - x_2^3 \\ x_1x_2 - x_3^3 \\ x_2^4 - x_3^4 \\ x_1^4 - x_2^4 \\ x_3^5 - x_1^3x_2^3 \end{cases}$$

$$\begin{cases} x_2^4 - x_3^4 \\ x_1^4 - x_2^4 \\ x_3^5 - x_1^3 x_2^3 \end{cases}$$

Make this into a system with the same degree for initial terms:

$$\mathscr{P} = \begin{cases} x_2^5 - x_2 x_3^4 \\ x_1^5 - x_1 x_2^4 \\ x_3^5 - x_1^3 x_2^3 \end{cases}$$

Setting
$$\mathcal{Q} = \begin{cases} x_2^5 \\ x_1^5 \\ x_3^5 \end{cases}$$
 and apply Rouché's Theorem

$$\mathscr{P} = \begin{cases} x_2^5 - x_2 x_3^4 \\ x_1^5 - x_1 x_2^4 \\ x_3^5 - x_1^3 x_2^3 \end{cases}$$

1. This can be obtained by multiplying the equations of

$$\mathcal{G} \text{ by the matrix } T = \begin{pmatrix} x_2 x_3 & 0 & -x_2^2 \\ 0 & -x_1^2 & x_1 x_2 \\ -x_3^2 & x_2^3 & x_2 x_3 \end{pmatrix}$$

2. The singular zero has multiplicity 80 which is larger than the actual multiplicity 11.

$$\mathscr{P} = \begin{cases} x_2^5 - x_2 x_3^4 \\ x_1^5 - x_1 x_2^4 \\ x_3^5 - x_1^3 x_2^3 \end{cases}$$

1. This can be obtained by multiplying the equations of

$$\mathcal{G} \text{ by the matrix } T = \begin{pmatrix} x_2 x_3 & 0 & -x_2^2 \\ 0 & -x_1^2 & x_1 x_2 \\ -x_3^2 & x_2^3 & x_2 x_3 \end{pmatrix}$$

2. The singular zero has multiplicity 80 which is larger than the actual multiplicity 11.

$$\mathscr{P} = \begin{cases} x_2^5 - x_2 x_3^4 \\ x_1^5 - x_1 x_2^4 \\ x_3^5 - x_1^3 x_2^3 \end{cases}$$

1. This can be obtained by multiplying the equations of

$$\mathcal{G} \text{ by the matrix } T = \begin{pmatrix} x_2 x_3 & 0 & -x_2^2 \\ 0 & -x_1^2 & x_1 x_2 \\ -x_3^2 & x_2^3 & x_2 x_3 \end{pmatrix}$$

2. The singular zero has multiplicity 80 which is larger than the actual multiplicity 11.

$$\mathscr{P} = \begin{cases} x_2^5 - x_2 x_3^4 \\ x_1^5 - x_1 x_2^4 \\ x_3^5 - x_1^3 x_2^3 \end{cases}$$

1. This can be obtained by multiplying the equations of

$$\mathcal{G} \text{ by the matrix } T = \begin{pmatrix} x_2 x_3 & 0 & -x_2^2 \\ 0 & -x_1^2 & x_1 x_2 \\ -x_3^2 & x_2^3 & x_2 x_3 \end{pmatrix}$$

- 2. The singular zero has multiplicity 80 which is larger than the actual multiplicity 11.
- 3. A more systematic way to deal with irregular systems will be a future problem to pursue.

Takk for din oppmerksomhet

Thank you for your attention!

(<u>https://arxiv.org/abs/2302.04776</u>)