solating clusters ot zeros

using arbitrary-degree inflation

Joint work with Michael Burr and Anton Leykin

Kisun Lee (UC San Diego) - kil004@ucsd.edu
The International Symposium on Symbolic and Algebraic Computation 2023



F . a system of analytic functions

Zero cluster
isolation
problem

z¥# € C": a point approximating zeros of &F



F . a system of analytic functions

Zero cluster
z¥# € C": a point approximating zeros of &F

i s O I a t i O n The zero cluster isolation problem is to compute two

regions R_and R, and a positive integer ¢ such that
problem



F . a system of analytic functions

Zero cluster
z¥# € C": a point approximating zeros of &F

i s O I a t i O n The zero cluster isolation problem is to compute two

problem

regions R_and R, and a positive integer ¢ such that

1) z* € R_CR}




F . a system of analytic functions

Zero cluster
z¥# € C": a point approximating zeros of &F

i s O I a t i O n The zero cluster isolation problem is to compute two

regions R_and R, and a positive integer ¢ such that
problem
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Zero cluster
solver generates a cluster of zeros
i SO I a t i on - R_tightly encloses the cluster

- R, separates the cluster with other zeros of #
problem
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Counterintuitive

Inflating the multiplicity of the zero
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Q. What & and @ should be to apply Rouché'’s

theorem?



Rouché's
theorem for
cluster
isolation




Xt + X3

Rouché's
theorem for
cluster
isolation

NS
1
—

X5 + X7



Rouché's
theorem for
cluster
isolation




Rouché's @:{xiixzz} and@z{xi}.
theorem for o )
cluster

isolation

- @ has a zero at the origin of multiplicity 4.



Rouché's @:{ﬁ:ﬁ} and@z{ﬁ}.
theorem for o |
cluster

isolation

- @ has a zero at the origin of multiplicity 4.

- ||P(x) — Qx)|| £ ||@(x)|| on S, (an e-sphere) for0 < e L 1.

It confirms the multiplicity 4 at the origin of .
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3x5
X1X2+T
B =Bod = , ,
X A1X2 %)
Xy - +

3. Apply
3 x| XX, xx3 X X5 x5
Xy +
2005  200/5  8/5 1615  3204/5
%3 — C3 o % — 5 5
X1 X142 X2

15\/§x2 Xi XXy 3x5
where C; = (_5\/§ 5\/§x1 T T 2 16 )
0 1

Canceling x;x, term in the first equation.

Making x13 as the leading term for the first equation.
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%%

Deleting some terms to inflate x, term

We call &5 ; a pre-inflatable system



Rouché's et A
theorem for ’ oty s
cluster

isolation

using

inflation




Rouché's I e e =i P

@3,3=%3°D3=

Xy, X X% X\
theorem for oty gy,
C I Uus t er 5. Applying the inflation operator Sl3 to replace x, by x23
® ® to make
isolation ¢ 5w

! _|_ ceoe
205 500 5000v/5  20y/5

®
_ 3 _
u s I n g @_@3’3051 - 3 Xt XX X3 X{x;
® ®
inflation

_|_ —|— coe
500n/5 5\/5 31250 250



Rouché's I e e =i P

@3,3=%3°D3=

Xy, X X% X\
theorem for oty gy,
C I Uus t er 5. Applying the inflation operator Sl3 to replace x, by x23
® ® to make
isolation ¢ 5w

! _|_ ceoe
205 500 5000v/5  20y/5

®
_ 3 _
u s I n g @_@3’3051 - 3 Xt XX X3 X{x;
® ®
inflation

_|_ —|— coe
500n/5 5\/5 31250 250



RO“ChéIS Oz g g

th rem for T RO . S .- B S
eore O 55 205 250 s00y5
C I Uus t er 5. Applying the inflation operator Sl3 to replace x, by x23
® ® to make
isolation C e
R
o 201/5 50000/5  204/5
USI ng @=@3,30513= N 3 3 253
X23 I 1 12 1 142 + ..

_|_
5001/5 5\/5 31250 250

inflation

3
X
Setting @ = { 1} and apply Rouché’s Theorem

%%



Rouché's

theorem for

cluster
isolation
using
inflation

4 3 2.2 3
X1 X1X2 X1X2 X1X2
x13 + + + ...
2005 200/5 &/5  16V/5
Pora=Cr0D, =
3,3 3 3 0 P 4
Aty X A1 X2 ! |
X2 | + |

5. Applying the inflation operator Sl3 to replace x, by x23

to make
x3+ x| X3 Tx? | P N
7 |
; 20¢/5 90 50000/5  201/5
P = ‘@3,3 ° Sl = 4 3 5 2 3
3, M X142 A 142
X5 + e

_|_
5001/5 5\/5 31250 250

X5

3
X
Setting @ = { 1} and apply Rouché’s Theorem

It confirms the multiplicity 9 ot X on S, for0 <e <1
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Applying Rouché’s theorem, & has a zero z* = (0,0) of

multiplicity 9 inside the ball ||x||* + ||x,||° < e for0 < e < 1.

Applying the inverse of each operator, we have the region

2

3

— | X; — 2x,

2 3
— 2 -2
: ‘ ‘2: : (2 + x,) A (v — 2% | (v — 22) < e’

51/3 25 625

It confirms the multiplicity 3 at the origin of &.
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8x, + 4x, + x5 + 0.001

t h eorem f or 7* = (—0.0001, — 0.0001) approximating 3 zeros
Locating z* at the origin and applying the same

cluster . 9in and applying
transformations result in

i SO I a t i on —0.0084 + 0.0013x; + 0.000078x% + x7 + 0.0016x5 + ...

—0.000022 + 0.00002x; + 0.00000089x7 + 0.00000008x7 + x5 + ...
®

u S I I'I g (cubic parts) > 0.4984 on the unit circle

o o (degree < 3 part) < 0.009757 on the unit circle

inflation

(degree > 3 part) < 0.2746 on the unit circle

( P e rt Ur b e d ) Setting the cubic part by @ and apply Rouché’s

Theorem



Applying Rouché’s theorem, we may get regions isolating cluster of zeros

The red point depicts the real part of two conjugate imaginary zeros.



Algorithm 1 Pre-inflation construction Algorithm 3 Generalized inflation for isolating clusters of zeros

Input: A square polynomial system G with a singular zero z* of Input: A square polynomial system G with a cluster of zeros near

breadth x, and integers d and .

z*and d € N.

Output: A (k,k, £)-pre-inflatable system whose zero at the origin Output: A pair of regions Ry and R- containing the cluster and

is of the same multiplicity as z* for G.

1: Apply an affine transformation A : C" — C" so that A(0) = z* 1:
and the kernel of the Jacobian of A = G o A is spanned by the 9
standard basis vectors ey, ..., éx.

2: Apply a linear map B : C|xy,...,x,]|" — Clx1,...,x,]|" to 3.
construct the system 8 = Bo A = {by,..., b, } such that b; for 4
i =1,...,k do not have any linear terms and the linear form of
b; is x; tor i > k. -

3: Apply a linear map Cy. : C[xy,...,xn]" — C[x1,...,x,]" to 6
produce the system Ci. = C. o 8 = {cy,...,cn} such that the
smallest total degree of a term with x41,..., X incy, ..., cxc is &
greater than k. 8

4: Apply a change of variables D, producing the system $j , = 7

Cr. o D¢ = {p1,...,pn} such that the smallest total degree of a

term in py41,. .., pn With only x1, ..., xx is greater than ¢. 10:

no other zeros of G such that R_ C R,°.
Construct a singular system G close to the given system.

. Apply Algorithm 1 with parameters k = £ = d to G and collect

the two invertible maps U and T appliedtoGasU oG o T.
Compute H as in Equation (2).

Compute a lower bound M on H,; on the (Hermitian) unit
sphere.

. Compute an upper bound M; on H- 4/ ||x||d+1 on the unit disk.
. Compute an upper bound Mz on H_; on the unit disk.

M

M
2 and ¢4 = A

1/d
2
Compute ¢_ = (7)

if ¢ < ¢, then

Apply the inverse of T o s;j to the balls of radii e and ¢,
to get the isolating regions R_ and R;.

end if

Both exact and inexact cases, isolation can be done algorithmically
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Regular
Zeros

& : asquare polynomial system such that the origin
Zz¥ is an isolated zero with x = dim ker D(z*)

z* is called a regular zero of breadth x and order d
if the Hilbert series for (&) at the origin is

(141442971

é
¢ o0 o O O ©
e @@ O
O 0O 0O 0 ©®© O
5 o o o & o the standard monomials
¢ 0o 0.9 ¢ O form the x-cube
oXIL e XYoLl o T1TC ..Q...>
kK=2,d=3

# =(123432.1)



2x; + X, +xl2 . . .
G = with z* = (0,0) has the Hilbert series
8x, + 4x, + X7

1 +1+ 12

(A regular zero of breadth 1 and order 3)



2x; + X, +xl2 . . .
G = with z* = (0,0) has the Hilbert series
8x, + 4x, + X7

1 +1+ 12

(A regular zero of breadth 1 and order 3)

3
XXy — A3

G = § XoX3 — x13 with z* = (0,0,0) has the Hilbert series

3
XAz — Xy

1 +3t+32+ 32 + ¢

(Not a regular zero)



Theorem (Burr-L.-Leykin) Let & be a square system in
n variables with a regular zero of breadth x and order d
at z*. Then, there is a locally invertible transformation
to a pre-inflatable system & = {p,,...,p,} such that
(1) The initial degree of each p; is equal to d for
1 <1<k,
(2) The initial forms of py,...,p,. do not vanish on the
unit sphere in x,...,x_, and

..’ K,

(3) The initial form of p;is x; forx+ 1 <i < n.
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XX —AX3

Irregular
G = x2x3—x13 with z* = (0,0,0)
systems -

From a local Grobner basis calculation, there are three

basis elements with pure powers initial terms:

3

XAz — Xq
X1 X2 — X5
143 2
3
XXy — X3
4 4
Xy — A3
4 4
X1 — X
5 3.3

A3 — XX



3
XX —AX3

Irregular
G = x2x3—x13 with z* = (0,0,0)
systems -

From a local Grobner basis calculation, there are three

basis elements with pure powers initial terms:

3

XrXzy — Xj
X1 X2 — X5
143 )
XXy — X5
1%2 3
4 4
Xy — A3
4 4
S %)
5 3.3

A3 — X1 X



Irregular -

systems o -

Make this into a system with the same degree for initial

terms:
x25 — )czxgL
P =1 x—x%
x35 — xfx%

X5

Setting @ = 4 x7 ¢ and apply Rouché’s Theorem

X3
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2. The singular zero has multiplicity 80 which is larger

than the actual multiplicity 11.



Irregular o xjs_x?le

systems o~

1. This can be obtained by multiplying the equations of
xx; 0 —x3
G by the matrix T=1] 0 —x12 X1Xy

2 3
—X3 Ay ApX3

2. The singular zero has multiplicity 80 which is larger

than the actual multiplicity 11.

3. A more systematic way to deal with irregular systems

will be a future problem to pursue.



Takk for din
oppmerksomhet

Thank you for your attention!

(https://arxiv.org/abs/2302.04776)



https://arxiv.org/abs/2302.04776

