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CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Certifying
(regular)

Solutions

Given a compact region I c C”
(or R"), apply an algorithm to
certify

(1) the existence
(2) the unigueness

of a root of a system in [I.



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Consider the error function erf(t)

SySte m (satisfying erf”(t) + 2terf'(t) = 0, erf(0) = 0, erf’(0) = %)
With and the following square system
{ ts +t5 = 4}
An a |ytiC 2 erf(ty) erf(tz) =1
o
Functions



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Consider the error function erf(t)

SySte I I l (satisfying erf”(t) + 2terf’(t) =0, erf(0) = 0, erf’(0) = %)

With and the following square system
tZ+t2=4

Analytic e =

) > -
t1+t2—14
t3t4—§

F u n CtiO n S rewrite as F(t1, b2, t3, t4) = £ — erf(ty)

| t4 —erf(t2)




CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Certify an approximation x of a regular root of
the following system F : C"+tM — Cn+Mm

Certifying solutions PO - Xnem) |
to a square system '
involving analytic
functions

. pn(X]_ rrrr Xn+m)
FX) Xn+1—9g1(x1)

| Xn+m—9m (Xm) )

g; : univariate analytic functions (called ingredients)
X* : a nonsingular (actual) root of F (i.e F(x*) =0)



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Certify an approximation x of a regular root of
the following system F : C"+tM — Cn+Mm

Certifying solutions A< X
to a square system '
involving analytic
functions

) pn(X1,..., Xn+m)
F(x) Xn+1—91(Xx1)

| Xn+m —9m (Xm) ]

g; : univariate analytic functions (called ingredients)
X* : a nonsingular (actual) root of F (i.e F(x*) =0)

Given a compact region I, check the existence and
unigueness of x* inI.



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Previous Implementations

g; - polynomials : Hauenstein and Sottile (2012)

g; - exponential functions : Hauenstein and Levandovskyy (2017)

Both implemented in alphaCertified



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Two Paradigms

Krawczyk method a-Theory

combines interval arithmetic and Newton'’s certify an approximation converges to a so-
method lution quadratically

Interval arithmetic Quadratic convergence

e For any arithmetic operator @, e For Ne(x) :=x— F/(x)"1F(x)

[a,b]le[c,d]={xey|xe€[a,b]l,ye][c d]} (Newton operator),

1 2k—1
(5] Ix=xl

k
HNF(X) —x*




CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Two Paradigms - krawczyk method

F : a square differentiable system on U c C"

I : an interval to certify

OF(I) := {F(x) | x €I} : an interval extension of F over an interval I
y rapointinI

Y : an invertible matrix

Define the Krawczyk operator

Ky)=y—YF(y)+Id—YOF' () —y)



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Two Paradigms - krawczyk method

F : a square differentiable system on U c C"

I : an interval to certify

OF(I) := {F(x) | x €I} : an interval extension of F over an interval I
y rapointinI

Y : an invertible matrix

Define the Krawczyk operator

Ky(I)=y—YF(y)+{Id—YOF'(D)I—y)
Theorem (Krawczyk 1969). The following holds:
(1) If x el is a root of F, then x € Ky(I)
(2) If Ky(I) C I, then there is a root of F in I (existence)

(3) If I has a root and 2||Id — YOF’(I)|| < 1, then there is root of F in I and it is unique
where || - || is the maximum operator norm (uniqueness)



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Two Paradigms - krawczyk method

F : a square differentiable system on U c R"

I : an interval to certify

OF(I) := {F(x) | x €I} : an interval extension of F over an interval I
y rapointinI

Y : an invertible matrix

Define the Krawczyk operator

Over the Real

Ky(I)=y—YF(y)+{Id—YOF'(D)I—y)
Theorem (Krawczyk 1969). The following holds:
(1) If x el is a root of F, then x € Ky(I)
(2) If Ky(I) C I, then there is a root of F in I (existence)

(3) If I has a root and lIId—YoF’(I)|| < 1, then there is root of F in I and it is unique
where || - || is the maximum operator norm (uniqueness)



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Two Paradigms - krawczyk method

If F(y) is hard to evaluate exactly, we use an interval OF(y) containing

F(y)
OKy(I)=y—YOF(y)+ (Id—YoF' () —y)



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Two Paradigms - «-Theory

Let x =(Xx1,..., Xn) be a point in C" and Ne(x) = x — F/(x)~1F(x).
a(F,x) = PB(Fx)y(F x)
B(F,x) = [Ix=Nr(x)|l = IIF’(xl)‘lF(X)II
YEX) = sup|[ERIIEO00 T

k>2



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Two Paradigms - «-Theory

Let x = (X1, ...,Xn) be a point in C" and Ne(x) = x — F/(x)"1F(x).

a(F,x) = B(Fx)y(F x)
B(F,x) = |lx—Ne(x)|l=IF/(x)"tF)I
Y(F,.X) := sup F’(X)_,if(k)(x) =

k>?2 '

If a(F, x) < 13_3m, then x converges quadratically to x*. Also,

[Ix —x* || < 2B(F, x).



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Two Paradigms - «-Theory

Let x = (X1, ...,Xn) be a point in C" and Ne(x) = x — F/(x)"1F(x).

a(F,x) = B(Fx)y(F x)
B(F,x) = |lx—Ne(x)|l=IF/(x)"tF)I
Y(F x) := sup|F U0 &

k>?2 '

If a(F, x) < 13_3m, then x converges quadratically to x*. Also,

[Ix —x* || < 2B(F, x).



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Two Paradigms - «-Theory

Theorem(*) (Burr, L., Leykin 2019). For each univariate analytic g;, let

(1) R; be a positive value strictly less than the radius of convergence
for g; at X,

(2) M; be an upper bound on |g;| on D(x;,, R)).

Then, if we let C; = ng max {1, g—:} then

- i
Y(F, x) < u(F, x) + ) C;
2L, &

where u(F, x) is a constant depends on F and x.



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Two Paradigms

Krawczyk method a-Theory

2

oK, (I) = y—YOF(y)+{Id—YoF'(1))(I-y) Y(F, x) < u(F, (2”(1 Z )

=1

where C; = Rllmax{ ’;’f}

1) How to evaluate analytic functions at points (or over an interval)?
2) How to find the radius of convergence”?



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Two Oracles - b-finite functions

: a solution to a linear differential equation with polynomial coefficients
pk(t) € C[t]:

pr(Dg () + -+ + p1(D)G’(t) + po(t)g(t) = 0



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Two Oracles - b-finite functions

(1) van der Hoeven (1999) provides analytic continuation algorithm
to approximate the value of a D-finite function.

(2) Mezzarobba and Salvy (2010) present algorithm to compute the
majorant series of D-finite functions, which provides the radius of
convergence.

Implementation : numGfun(Maple),
ore_algebra.analytic(SageMath)



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Two Oracles - b-finite functions

(1) Hoe gorithm to

PP We can certify a root of systems

with D-finite functions!

(2) Mez 0 compute
the e radius of
convergence.

Implementation : numGfun(Maple),
ore_algebra.analytic(SageMath)



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Experiments

Comparison between two methods

Consider the error function erf(t) and the following square system

2+ t2—4 ]
t%+f§:4 F(t o fat ) t3t4—%
with , 0o, 3, =
2 erf(t1) erf(ty) =1 1,52, %3, %4 t3 —erf(ty)
| ta—erf(tz)_

For an approximation t = (0.480322,1.94147,0.503058,0.993961), we
use both methods to certify this root. We round each coordinate by several
decimal places to check when the methods fail.



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Experiments

Comparison between two methods

decimal places || Krawczyk method | a-theory
0 fail fai
1 pass fai
2 pass fal
3 pass pass

Table 1: The Krawczyk-based method succeeds with less precision than the a-theory-based method.



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Experiments
Comparison between alphaCertified

Consider the following square system:

t —0.0183

at _ | =
{e' =0.0183} with F(t1, tp) = £, — et

For an approximationt=(—1,0.018316), we compute y(F, t) values using
alphaCertified and our implementation.



CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Experiments

Comparison between alphaCertified

Y(F, t)
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Upper bound from Theorem (¥)

Y(F, x) < u(F, (

é
d>2

2[|(1, )|

m

+ 2,6

=1
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CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Experiments
Comparison between alphaCertified

Y(Ft) |
+1 Yimplementation Vs
| * |nexact output comes from the
160 + limitation of ore algebra when it
_ evaluates over intervals.
120 t
| « For proper values of r, has tighter
80 YalphaCertified bound than alphaCertified

40 +
ﬁ * Too big or too small r makes v

———t et [ bigger




CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Experiments
Comparison between alphaCertified

YED |
+1 Yimplementation

Y *
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120 v « Actual yvalueis2!
80 YalphaCertified
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CERTIFYING SYSTEMS WITH ANALYTIC FUNCTIONS

Future Directions

« Oracles for other analytic functions?
= holonomic functions (i.e., multivariate setting)
= Pfaffian functions

« Certifying multiple roots?
= Simple multiple roots (e.g. L., Li, Zhi 2019)



Thanks for your attention!



