Certifying solutions to a square system involving analytic functions

Michael Burr* Kisun Lee[†] Anton Leykin[†]
*Clemson University [†]Georgia Institute of Technology

SIAM Conference on Applied Algebraic Geometry 2019 Bern, Switzerland

Certifying (regular) Solutions

Given a compact region $I \subset \mathbb{C}^n$ (or \mathbb{R}^n), apply an algorithm to certify

- (1) the existence
- (2) the uniqueness

of a root of a system in *I*.

System With Analytic **Functions**

Consider the *error function* erf(t)

(satisfying erf''(t) + 2t erf'(t) = 0, erf(0) = 0, erf'(0) = $\frac{2}{\sqrt{\pi}}$)

and the following square system

$$\begin{cases} t_1^2 + t_2^2 = 4 \\ 2 \operatorname{erf}(t_1) \operatorname{erf}(t_2) = 1 \end{cases}$$

System With Analytic **Functions**

Consider the *error function* erf(t)

(satisfying erf''(t) + 2t erf'(t) = 0, erf(0) = 0, erf'(0) = $\frac{2}{\sqrt{\pi}}$)

and the following square system

$$\begin{cases} t_1^2 + t_2^2 = 4 \\ 2 \operatorname{erf}(t_1) \operatorname{erf}(t_2) = 1 \end{cases}$$

rewrite as
$$F(t_1, t_2, t_3, t_4) = \begin{bmatrix} t_1^2 + t_2^2 - 4 \\ t_3 t_4 - \frac{1}{2} \\ t_3 - \text{erf}(t_1) \\ t_4 - \text{erf}(t_2) \end{bmatrix}$$

Certifying solutions to a square system involving analytic functions Certify an approximation x of a regular root of the following system $F: \mathbb{C}^{n+m} \to \mathbb{C}^{n+m}$

$$F(x) := \begin{bmatrix} p_1(x_1, \dots, x_{n+m}) \\ \vdots \\ p_n(x_1, \dots, x_{n+m}) \\ x_{n+1} - g_1(x_1) \\ \vdots \\ x_{n+m} - g_m(x_m) \end{bmatrix}$$

 g_i : **univariate** analytic functions (called *ingredients*) x^* : a nonsingular (actual) root of F (i.e $F(x^*) = 0$)

Certifying solutions to a square system involving analytic functions Certify an approximation x of a regular root of the following system $F: \mathbb{C}^{n+m} \to \mathbb{C}^{n+m}$

$$F(x) := \begin{bmatrix} p_1(x_1, \dots, x_{n+m}) \\ \vdots \\ p_n(x_1, \dots, x_{n+m}) \\ x_{n+1} - g_1(x_1) \\ \vdots \\ x_{n+m} - g_m(x_m) \end{bmatrix}$$

 g_i : **univariate** analytic functions (called *ingredients*) x^* : a nonsingular (actual) root of F (i.e $F(x^*) = 0$)

Given a compact region I, check the existence and uniqueness of x^* in I.

Previous Implementations

 g_i - polynomials : Hauenstein and Sottile (2012)

 g_i - exponential functions : Hauenstein and Levandovskyy (2017)

Both implemented in alphaCertified

Two Paradigms

Krawczyk method

combines interval arithmetic and Newton's method

Interval arithmetic

• For any arithmetic operator \odot , $[a,b]\odot[c,d]=\{x\odot y\,|\,x\in[a,b],y\in[c,d]\}$

α-Theory

certify an approximation converges to a solution quadratically

Quadratic convergence

• For $N_F(x) := x - F'(x)^{-1}F(x)$ (Newton operator),

$$||N_F^k(x) - x^*|| \le \left(\frac{1}{2}\right)^{2^k - 1} ||x - x^*||$$

F: a square differentiable system on $U \subset \mathbb{C}^n$

I: an interval to certify

 $\Box F(I) := \{F(x) \mid x \in I\}$: an interval extension of F over an interval I

y: a point in I

Y: an invertible matrix

Define the Krawczyk operator

$$K_{V}(I) = y - YF(y) + (Id - Y \square F'(I))(I - y)$$

F: a square differentiable system on $U \subset \mathbb{C}^n$

I: an interval to certify

 $\Box F(I) := \{F(x) \mid x \in I\}$: an interval extension of F over an interval I

y: a point in I

Y: an invertible matrix

Define the Krawczyk operator

$$K_{y}(I) = y - YF(y) + (Id - Y \square F'(I))(I - y)$$

Theorem (Krawczyk 1969). The following holds:

- (1) If $x \in I$ is a root of F, then $x \in K_{V}(I)$
- (2) If $K_{y}(I) \subset I$, then there is a root of F in I (existence)
- (3) If I has a root and $\sqrt{2}||Id Y \square F'(I)|| < 1$, then there is root of F in I and it is unique where $||\cdot||$ is the maximum operator norm (uniqueness)

Over the **Real**

F: a square differentiable system on $U \subset \mathbb{R}^n$

I: an interval to certify

 $\Box F(I) := \{F(x) \mid x \in I\}$: an interval extension of F over an interval I

y: a point in I

Y: an invertible matrix

Define the Krawczyk operator

$$K_{y}(I) = y - YF(y) + (Id - Y \square F'(I))(I - y)$$

Theorem (Krawczyk 1969). The following holds:

- (1) If $x \in I$ is a root of F, then $x \in K_V(I)$
- (2) If $K_{V}(I) \subset I$, then there is a root of F in I (existence)
- (3) If I has a root and $||Id Y \square F'(I)|| < 1$, then there is root of F in I and it is unique where $||\cdot||$ is the maximum operator norm (uniqueness)

If F(y) is hard to evaluate exactly, we use an interval $\Box F(y)$ containing F(y)

$$\Box K_{V}(I) = y - Y \Box F(y) + (Id - Y \Box F'(I))(I - y)$$

Two Paradigms - α-Theory

Let $x = (x_1, \dots, x_n)$ be a point in \mathbb{C}^n and $N_F(x) = x - F'(x)^{-1}F(x)$.

$$\alpha(F, x) := \beta(F, x)\gamma(F, x)$$

$$\beta(F, x) := \|x - N_F(x)\| = \|F'(x)^{-1}F(x)\|$$

$$\gamma(F, x) := \sup_{k \ge 2} \left\| \frac{F'(x)^{-1}F^{(k)}(x)}{k!} \right\|^{\frac{1}{k-1}}$$

Two Paradigms - α-Theory

Let $x = (x_1, \dots, x_n)$ be a point in \mathbb{C}^n and $N_F(x) = x - F'(x)^{-1}F(x)$.

$$\alpha(F, x) := \beta(F, x)\gamma(F, x)$$

$$\beta(F, x) := \|x - N_F(x)\| = \|F'(x)^{-1}F(x)\|$$

$$\gamma(F, x) := \sup_{k \ge 2} \left\| \frac{F'(x)^{-1}F^{(k)}(x)}{k!} \right\|^{\frac{1}{k-1}}$$

If $\alpha(F, x) < \frac{13 - 3\sqrt{17}}{4}$, then x converges quadratically to x^* . Also, $||x - x^*|| \le 2\beta(F, x)$.

Two Paradigms - α-Theory

Let $x = (x_1, \dots, x_n)$ be a point in \mathbb{C}^n and $N_F(x) = x - F'(x)^{-1}F(x)$.

$$\alpha(F, x) := \beta(F, x)\gamma(F, x)$$

$$\beta(F, x) := \|x - N_F(x)\| = \|F'(x)^{-1}F(x)\|$$

$$\gamma(F, x) := \sup_{k \ge 2} \left\| \frac{F'(x)^{-1}F^{(k)}(x)}{k!} \right\|^{\frac{1}{k-1}}$$

If $\alpha(F, x) < \frac{13 - 3\sqrt{17}}{4}$, then x converges quadratically to x^* . Also, $||x - x^*|| \le 2\beta(F, x)$.

Two Paradigms - \alpha - Theory

Theorem(*) (Burr, L., Leykin 2019). For each univariate analytic g_i , let

- (1) R_i be a positive value strictly less than the radius of convergence for g_i at x_i ,
- (2) M_i be an upper bound on $|g_i|$ on $\overline{D}(x_i, R_i)$.

Then, if we let $C_i = \frac{1}{R_i} \max \left\{ 1, \frac{M_i}{R_i} \right\}$, then

$$\gamma(F,x) \leq \mu(F,x) \left(\frac{d^{\frac{3}{2}}}{2\|(1,x)\|} + \sum_{i=1}^{m} C_i \right).$$

where $\mu(F, x)$ is a constant depends on F and x.

Two Paradigms

Krawczyk method

$$\Box K_{Y}(I) = y - Y \Box F(y) + (Id - Y \Box F'(I))(I - y)$$

α-Theory

$$\gamma(F,x) \leq \mu(F,x) \left(\frac{d^{\frac{3}{2}}}{2\|(1,x)\|} + \sum_{i=1}^{m} C_i \right).$$

where
$$C_i = \frac{1}{R_i} \max \left\{ 1, \frac{M_i}{R_i} \right\}$$

- 1) How to **evaluate** analytic functions at points (or over an interval)?
- 2) How to find the radius of convergence?

Two Oracles - D-finite functions

: a solution to a linear differential equation with polynomial coefficients $p_k(t) \in \mathbb{C}[t]$:

$$p_r(t)g^{(r)}(t) + \cdots + p_1(t)g'(t) + p_0(t)g(t) = 0$$

Two Oracles - D-finite functions

(1) van der Hoeven (1999) provides analytic continuation algorithm to approximate the value of a *D*-finite function.

(2) Mezzarobba and Salvy (2010) present algorithm to compute the *majorant series* of *D*-finite functions, which provides the radius of convergence.

Two Oracles - D-finite functions

(1) Hoe app
We can certify a root of systems
With **D-finite functions!**o compute e radius of convergence.

ExperimentsComparison between two methods

Consider the *error function* erf(t) and the following square system

$$\begin{cases} t_1^2 + t_2^2 = 4 \\ 2\operatorname{erf}(t_1)\operatorname{erf}(t_2) = 1 \end{cases} \text{ with } F(t_1, t_2, t_3, t_4) = \begin{bmatrix} t_1^2 + t_2^2 - 4 \\ t_3t_4 - \frac{1}{2} \\ t_4 - \operatorname{erf}(t_2) \end{bmatrix}$$

For an approximation t = (0.480322, 1.94147, 0.503058, 0.993961), we use both methods to certify this root. We round each coordinate by several decimal places to check when the methods fail.

ExperimentsComparison between two methods

decimal places	Krawczyk method	lpha-theory
0	fail	fail
1	pass	fail
2	pass	fail
3	pass	pass

Table 1: The Krawczyk-based method succeeds with less precision than the lpha-theory-based method.

Comparison between alphaCertified

Consider the following square system:

$$\{e^{4t} = 0.0183\}$$
 with $F(t_1, t_2) = \begin{bmatrix} t_2 - 0.0183 \\ t_2 - e^{4t_1} \end{bmatrix}$.

For an approximation t = (-1, 0.018316), we compute $\gamma(F, t)$ values using alphaCertified and our implementation.

Comparison between alphaCertified

Upper bound from Theorem (*)

$$\gamma(F,x) \le \mu(F,x) \left(\frac{d^{\frac{3}{2}}}{2\|(1,x)\|} + \sum_{i=1}^{m} C_i \right)$$

Comparison between alphaCertified

- Inexact output comes from the limitation of ore_algebra when it evaluates over intervals.
- For proper values of r, has tighter bound than alphaCertified
- Too big or too small r makes γ bigger

Comparison between alphaCertified

Future Directions

- Oracles for other analytic functions?
 - holonomic functions (i.e., multivariate setting)
 - Pfaffian functions

- Certifying multiple roots?
 - Simple multiple roots (e.g. L., Li, Zhi 2019)

Thanks for your attention!