# **Certification for Roots of Systems** -- involving analytic functions

# Michael Burr\*, Kisun Lee<sup>†</sup>, Anton Leykin<sup>†</sup> <sup>†</sup>Georgia Institute of Technology \*Clemson University

# I. Goals and Settings

: Certify an approximation of a regular root of the following system  $p_1(x_1,...,x_{n+m})$ 

# II. Two Paradigms

## **Krawczyk Method**

: combines *interval arithmetic* and an interval Newton's method.

: For any arithmetic operator  $\odot$ ,

$$F(x) := \begin{vmatrix} p_n(x_1, \dots, x_{n+m}) \\ x_{n+1} - g_1(x_1) \\ \vdots \\ x_{n+m} - g_m(x_m) \end{vmatrix}$$

x\* : a nonsingular (actual) root of F *g<sub>i</sub>* : analytic functions (called *ingredients*) Given a compact region *I*, certify the existence and uniqueness of  $x^*$  in *I*.

### **Previous Works**

• g<sub>i</sub>-Polynomials : Hauenstein and Sottile (2012) •  $g_i$ -Exponential functions : Hauenstein and Levandovskyy (2017)

# **III. Two Oracles** – for *D* – finite functions

### **D**-finite function

: a solution to a linear differential equation with polynomial coef-

#### $[a, b] \odot [c, d] = \{x \odot y \mid x \in [a, b], y \in [c, d]\}$

*F* : a square differentiable system on  $U \subset \mathbb{C}^{n+m}$  $\Box F(I) := \{F(x) \mid x \in I\} : \text{ an interval extension of } F \text{ over } I$ *Y* : an invertible matrix Define the Krawczyk operator

 $K_{V}(I) = y - YF(y) + (Id - Y \Box F'(I))(I - y)$ 

#### Then,

(1) If  $x \in I$  is a root of F, then  $x \in K_V(I)$ 

(2) If  $K_V(I) \subset I$ , then there is a root of F in I

(3) If I has a root and  $\sqrt{2} \|Id - Y \Box F'(I)\| < 1$ , then there is root of F in I and it is unique where  $\|\cdot\|$  is the maximum operator norm

# **α-Theory**

Let  $x = (x_1, \ldots, x_n)$  be a point in  $\mathbb{C}^n$  and  $N_F(x) = x - F'(x)^{-1}F(x)$ .

$$\begin{aligned} \alpha(F, x) &:= \beta(F, x)\gamma(F, x) \\ \beta(F, x) &:= \|x - N_F(x)\| = \|F'(x)^{-1}F(x)\| \\ \gamma(F, x) &:= \sup_{k \ge 2} \left\| \frac{F'(x)^{-1}F^{(k)}(x)}{k!} \right\|^{\frac{1}{k-1}} \end{aligned}$$

If  $\alpha(F, x) < \frac{13 - 3\sqrt{17}}{4}$ , then x converges quadratically to  $x^*$ . Also,  $\|x-x^*\| \leq 2\beta(F,x).$ 

ficients  $p_k(t) \in \mathbb{C}[t]$ :

# $p_r(t)q^{(r)}(t) + \dots + p_1(t)q'(t) + p_0q(t) = 0$

(1) Mezzarobba and Salvy (2010) present an algorithm to compute the *majorant series* of *D*-finite functions which give the radius of convergence.

Implementation : numGfun(Maple),

ore\_algebra.analytic(SageMath)

(2) Hoeven (1999) provides the analytic continuation algorithm to approximate the value of a *D*-finite function. **Implementation** : ore\_algebra.analytic(SageMath)

**Theorem.** For each univariate analytic  $g_i$ , let

(1)  $R_i$  be a positive value strictly less than the radius of convergence for  $g_i$  at  $x_i$ ,

(2)  $M_i$  be an upper bound on  $|g_i|$  on  $\overline{D}(x_i, R_i)$ . Then, if we let  $C_i = \frac{1}{R_i} \max \left\{ 1, \frac{M_i}{R_i} \right\}$ , then

$$\gamma(F, x) \leq \mu(F, x) \left( \frac{d^{\frac{3}{2}}}{2 \| (1, x) \|} + \sum_{i=1}^{m} C_i \right).$$

where  $\mu(F, x)$  is a constant depends on F and x.

**Q.** How to compute (1) and (2) ?

# IV. Experiments

SageMath implementation is available at https://github.com/klee669/DfiniteComputationResults

## **Comparison between** alphaCertified

alphaCertified certifies a root of not only polynomial systems but also systems with exponential functions. Consider the following square system:

### Comparison between $\alpha$ -theory and Krawczyk method

Consider the *error function* erf(t) and the following square system

$$\begin{cases} t_1^2 + t_2^2 = 4 \\ 2 \operatorname{erf}(t_1) \operatorname{erf}(t_2) = 1 \end{cases} \text{ with } F(t_1, t_2, t_3, t_4) = \begin{bmatrix} t_1^2 + t_2^2 - 4 \\ t_3 t_4 - \frac{1}{2} \\ t_3 - \operatorname{erf}(t_1) \\ t_4 - \operatorname{erf}(t_2) \end{bmatrix}$$

For an approximation t = (0.480322, 1.94147, 0.503058, 0.993961), we use both methods to certify this. We round each coordinate by various decimal places to check when the methods fail.

| decimal places | Krawczyk method | $\alpha$ -theory |
|----------------|-----------------|------------------|
| 0              | fail            | fail             |
| 1              | pass            | fail             |
| 2              | pass            | fail             |
| 3              | pass            | pass             |

Table 1: Comparison between the precision required for the Krawczyk-based and  $\alpha$ -theory-based methods. In this case, the Krawczyk-based method succeeds with less precision than the  $\alpha$ -theory-based method.

 $\{e^{4t} = 0.0183\}$  with  $F(t_1, t_2) = \begin{bmatrix} t_2 - 0.0183 \end{bmatrix}$ 

For an approximation t = (-1, 0.018316), we compute  $\gamma(F, t)$  values using alphaCertified and our implementation.

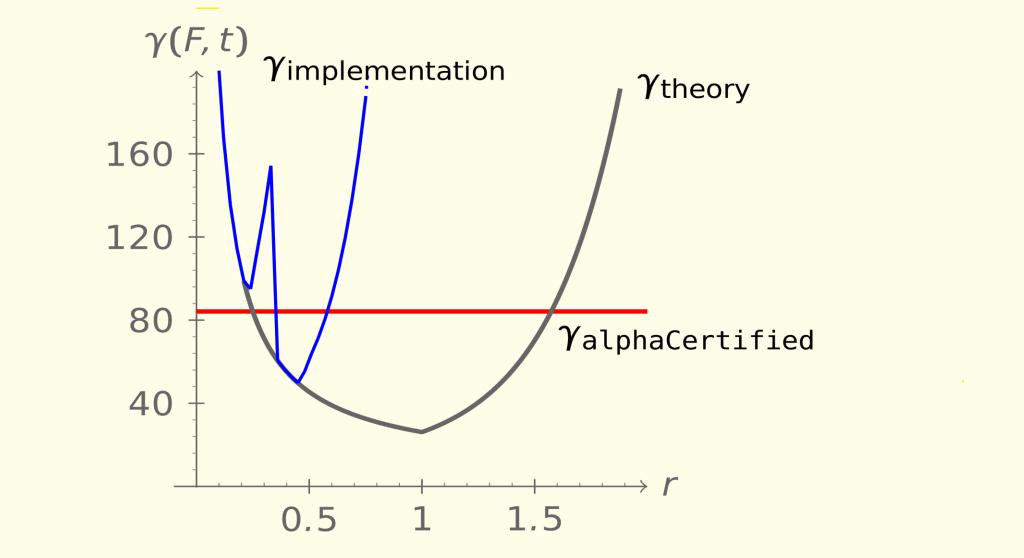


Figure 1: Comparison of computed  $\gamma$  values those from alphaCertified. For some choices of r  $\gamma_{\text{theory}}$  and  $\gamma_{\text{implementation}}$  have lower values of  $\gamma$  than that of alphaCertified. The implementation bounds differ from the theoretical bounds due to limitations of the orealgebra.analytic package.