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Nash equilibrium problem

In game theory, a state that a player can achieve A problem finding such Nash equilibria is called
the desired outcome by not changing their initial the Nash equilibrium problem (NEP).
strategy.

It I1s a state that every player’s objective Is
optimized for given other players’ strategies.
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How to solve an equation?

How fo find roots of f(x) = x> — 3x + 1?

> Solve(x5 —3x+ 1)
RootOf(_Z5 — 3 Z+ 1,index= 1), RootOf(_Z5 — 3 Z+ 1, index = 2), RootOf(_Z5 — 3 Z+ 1, index

= 3), RootOf(_Z5 — 3 Z+ 1, index = 4), RootOf(_Z5 — 3 Z+ 1, index = 5)

> fsolve(x5 —3x+ 1)
—1.388791984, 0.3347341419, 1.214648043
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How tfo solve an equation? (Geometric point of view)

How fo find roots of f(x) = x> — 3x + 1?

Consider g(x) = x> — 1 (whose roofs are the 5-th roots of unity ST
J(x)

Then, H(x, 1) = (1 — #)f(x) + tg(x) finds roots off(x) as 1 goes from 1 to 0. (Homotopy method)
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Why Homotopy Method?

» Current known methods for NEP are based on optimization methods.

> Heavily relies on the convexity of feasible sets.

» Previous works focus on finding one NE (or finding all NEs one-by-one).

> Homotopy methods can be proper for finding all NEs at once.
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Consider N-player game. I € Clx]
X 1= (Xi s °°°9xin-) c R the i-th player’s objective function.
the i-th player’s strategu. 8/ e Clx]

X=Xy, ey xy) € R
a vector for all players’ strategies.
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NEP as an optimization problem.

Find a fuple u = (uy, ..., Uy) such that i, is a optimizer of the i-th player’s optimization:

min - fi(uy, oo Ui Xy Ui qs .y Uy)
x,€R"

Fl : s.T. gl,](ul, 50 oc I/tl'_l, )Cl, ui+1’ 50 G0 I/lN) — O |f_] = %l
gi,j(ul, e Ui Xy Ui gy .. Uy) 20 i €S

where & and .¥ ; are sets of indices for equality constraints and inequality constraints respectively.
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Optimality Conditions for GNEPs

KKT system

If x 1s a generalized Nash equilibrium, then
the KKT condition holds foralli = 1,..., V.

Then, we have the following KKT system for each

1=1,...,N.

infi(x) - Z /li,j Vxl-gi,j(x) =0
i - j=1
g (x)=0 forj=1,....m

l

R
|

Find all solutions of the KKT system F := (F1, ..., Fy).
(a posteriori NE selection required)
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st 1 —xx,2>20 st. 1 —xi—x5=0
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Optimality Conditions for GNEPs

Example
Consider 2-player GNEP

. 1 . 1
min Exlzxg — X1 X5 — 2X% min Exfxzz — X{Xy — 2X,%,
lst player : { x€R’ 2nd player : { 2€R
st 1 —xx,20 st. 1 —xi—x5=0

o { Vxl-fl_/ll Vxlgl,l — x1x23 — x22 — 2.X2_/11(_.Xé) o { sz‘fz /12 X2g21 — .Xfxz 'xlz . 2X1 — 2«2(_2)(:2)
l - 2

ﬂ‘lgl,l — /11(1 _XIXZ) 8.1 = 1 — X1 —X22



Optimality Conditions for GNEPs

Example
Consider 2-player GNEP

: 1 : 1.3.2_ .2
min Exlzxg — X1 X5 — 2X% min Exfxz — X{ Xy — 2X1X,
lst player : { x€R’ 2nd player : { 2€R
st 1 —xx,20 st. 1 —xi—x5=0

Vxlfl_/ll Vxlgl,l = x1x23 — x22 — 20— A1 (—x,) szfz MV 82,1 = xfxz X12 — 2x) — Ay(—2x,)
F: Fy ,
/1181,1 = A (1 = x1x,) g1 = | —)c1 — X5
These systems provide the system F := { F, F> }



Homotopy Continuation

Finding solutions by tracking homotopy

H(t,x)=tyG&x)+ (1 —F(x), te]0,1]

Solve I (target system) by constructing a homotopy

with G (start system) whose solutions are known.
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Bernstein theorem

Theorem [Bernstein1975). F = {f,,....f,} C Clx,,...,x,]:asquare polynomial system.

Q. : the Newton polytope of f.. Then, (# isolated roots in (C\ {0})") < MV(Q,, ..., Q,).

MV(Q,, ..., 0,)is the mixed volume of O, ..., 0

.
The mixed volume above is called the BKK bound.

The polyhedral homotopy tracks BKK bound many paths.



Polyhedral Homotopy Continuation

Mixed volume

fe Clx,...,x,|:apolynomial.

A := supp(f):the support of f (the set of exponents of monomials appearin f).
(O := conv(A) C R": the Newton polytope (the convex hull of A).



Polyhedral Homotopy Continuation

Mixed volume

fe Clxy,...,x,]:apolynomial.

A := supp(f):the support of f (the set of exponents of monomials appearin f).
(O := conv(A) C R": the Newton polytope (the convex hull of A).

fi» ---» [, : polynomials with Newton polytopes Qy, ..., O, .
MV(Q,, ..., Q,):the mixed volume of O, ..., O

n:



Polyhedral Homotopy Continuation

Mixed volume

fe Clx,...,x,] :apolynomial.

A := supp(f):the support of f (the set of exponents of monomials appearin f).
(O := conv(A) C R": the Newton polytope (the convex hull of A).

fi» ---» [, : polynomials with Newton polytopes Qy, ..., O, .
MV(Q,, ..., Q,):the mixed volume of O, ..., O

n:

the coefficient of 4;+--4, termin a polynomial Vol(4,Q; + - + 1,0,).
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Bernstein Generic System

The second part of Bernstein theorem

Theorem [Bernstein1975). F = {f,,....f,} C Clx,,...,x,]:asquare polynomial system.

Q. : the Newton polytope of f.. Then, (# isolated roots in (C\ {0})") < MV(Q,, ..., Q,).
The equality holds if and only if the facial system F* := {f}", ..., f,’} has no solutions in (C\ {O})" for

any weight vectorw € Z".

When a system achieves the BKK bound, we say that the system is Bernstein generic.
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Bernstein Generic System

Facial system

_ a . W a
f— Z C X €& C[)Cl, ...,xn] Deflnef = Z C X"
acA acA"

a polynomial with the support A C Z".

weZ"
a weight vector. F" = {flw, .o ,f,vlv}
A" :={a € A | (w, a) achieves its minimum}

the facial system of F with respect to w
the face of A with respect to w.
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Bernstein Generic System

Example | = clxy4 T CHXYZ + C3XY + Cy YT + C5XZ + CgX + C7Y + CgZ T+ Cy.

&

)
7
N
A

w = (=1,0,0)

,

= clxy4 + CHXYZ + C3XY + C5XZ + CeX



Bernstein Generic System

Example /= ¢, xy" + C,xVZ + C3xy + C,V7 + CsXZ + CeX + €y + CZ + Co

A

W:(Oa_19_3) W

= clxy4 + C,XYZ + V7



Solving KKT System

Theorem [L.-Tang]. Suppose that foreachi = 1,..., NV, polynomials /. and g ;are

generic forallj = 1,...,m. Then the KKT system I = { [, ..., I/} is Bernstein
general.



Solving KKT System

Theorem [L.-Tang]. Suppose that foreachi = 1,..., N, polynomials f;and g; ; are

generic forallj = 1,...,m. Then the KKT system I = { [, ..., I/} is Bernstein
general.

Hence, for a generic KKT system, the polyhedral homotopy method can find all solutions.



Selecting GNEs from KKT Points

K ¢ :the set of KKT points (x, A) obtained by the homotopy method.



Selecting GNEs from KKT Points

K ¢ :the set of KKT points (x, A) obtained by the homotopy method.

A :the set of real KKT points with 4 > Oand g; (x) > 0.

K ={x, L) e FX-NI NMZ-,J-Z 0, g;/(x) 2 0]




Selecting GNEs from KKT Points

K ¢ : the set of KKT points (x, A) obtained by the homotopy method.

A :the set of real KKT points with 4 > Oand g; (x) > 0.

K ={x,A) e XNl NMZ-,J-Z 0, g;/(x) 2 0]

P.= n (K ):aprojection of & onto x coordinates.



Selecting GNEs from KKT Points

Foru = (uy, ..., uy) € &P, consider the following optimization problem:

x,eR"

gi,j(xi, u_)=>0 ifje s,

If 115 a GNE, then each u; Is a minimizer.

We solve the optimization problem using the moment-S0S relaxation.



Experiments

Example 1) Non-convex Problem

. 2 2 : 3 2
nélﬂgz 3x2,1(x1,1)3 + 5(x1’2)3 _ 22j= (X1 ij (X xnélugz (2x) 1+ 3% 5)(0 1) — 3% 1 + 7(x3 )" + 5x1 1 X1 5% 5
X 2

Ist player : 2nd player :

S . t le,l - 2)61,2 + 3X2’2 - 1 Z O, 3 _ X2,1 ‘ xlTxl Z O, S . t 7)61,2 + 3.)(:2,2 - Ssz,l + 3 Z O, 2XZ’1 Z - 1,
X112 =2, x,21; 2=%,20,5+x,20.



Experiments

Example 1) Non-convex Problem

. 2 2 . 3 2
mlﬂgz 3362,1(361,1)3 T 5(361,2)3 - 22]-:1 2,57 ¢ ijl X2.j Hélﬂgz (2x1 1 4 3% 2) (% 1)7 = 3% 1 + T(x2)" + 5x1 1% 2% 5
X, € e

Istplager: 4 ¢ ;. 5x11—2%1,4+3%,—-120,3—x,,-x{x; >0, 2ndplaer: 3 g 7. Txip+ 3%, = 5%, +3 20, 2%, > — L,

X112 =2, x,21; 2=2%,20,5+x,20.

The KKT system has the mixed volume 480, Solving using HomotopyContinuation. jl, if
480 KKT points and gives a unique GNE in 5.75 seconds (4 seconds to compute KKT points,

1.75 seconds for selecting).

(0.7636, 1, 0.47, —0.2727)



Experiments

Example 2) Convex Problem
Example A.3 of [Facchineil-Kanzow 2010]

A 3-player game with objectives f; = —x.' A.x; + x.' (Bx_; + b;) where

] o
20 5 3 : : : :
T B
'3 -5 15 - : - :
—6 10 11 20 : - : - i .
20 1 =3 12 1 10 =2 22 12 16 1
15 8 2 21 10 —4 8 16 21 9 19 21 -4 20 L 0

Constraints are given —10 <x <10, g, =20 —x;; =X, = X320, g15 =Xy | — X35 — X} | — X5 + X 34+ 5 >0,

G 1 =X+ X 3—=X3 1 =X +X,+720, 8 =X 1+X3—X;—Xx,+4>0.




Experiments

Example 2) Convex Problem
Example A.3 of [Facchineil-Kanzow 2010]

The mixed volume: 12096
Solution found : 11631 KKT paints

GNE found : 5 GNEs found with 4 newly found

Elapsed time: 177 seconds



Experiments

Comparison

Comparison with known methods on Example 1) and 2) :

Interior point method (Dreves-Facchinel-Kanzow-Sagratella 2011)
Augmented Lagrangian method (Kanzow-Steck 2016)

Gauss-Seidel method (Nie-Tang-Xu 2021)
Semidefinite relaxation (Nie-Tang 2021)



Experiments

Comparison

IPM : Interior point method, ALM : Augmented Lagrangian method, GSM : Gauss-Seidel method, SDP : Semidefinite relaxation,

PHC : Solved by using the polyhedral homotopy method (HomotopyContinuation. jl)

IPM ALM GSM SDP PHC
Time 11.47 17.89 5.75
Example 1) Falil Falil
Error 4.1077 1-107° 2.1078
Time 3.12 1.50 11.55 177
Example 2) Fail

Error 21077 1-1077 2. 1077 1-107° (5 GNEs)



Experiments

Example 3) Random nonconvex GNEP

Consider NV-player GNEP whaose i-th player’s optimization problem is
min  f,(x;, x_.
x,eR"

—l 11

where A, = R.' R, with randomly generated R; € R"*" and B; € R"*""™) ¢. € R",d. € R.

The objective f; is a dense polynomial of degree d with randomly generated real coefficients.



Experiments

Example 3) Random nonconvex GNEP

Consider NV-player GNEP whaose i-th player’s optimization problem is
min  f,(x;, x_.
x,eR"

where A, = R.' R, with randomly generated R; € R"*" and B; € R"*""™) ¢. € R",d. € R.

The objective f; is a dense polynomial of degree d with randomly generated real coefficients.

For various (d, N, n;)-values, solve the problem 100 times and record the success rate (for finding
mixed volume many KKT points) and elapsed time (solving KKT + selecting GNESs).



Experiments

Example 3) Random nonconvex GNEP

- n;  Mixed volume Success rate Average time

2 25 100 % 0.0563 + 1.1330
2 2 3 49 100 % 0.1802 + 1.5098

3 2 29 100 % 0.8473 + 3.1390

2. || 2 100 100 % 0.1893 + 2.5667
3 2 5 4384 100 % 2.1800 +5.7500

D 1000 97 % 5.2550 + 14.4360

2 289 100 % 0.8270 + 4.4256
4 2 |3 23809 95 % 24.5330 + 21.9054

3 2 4913 95 % 44.0899 + 40.6792



Thank you for your attention




