Polyhedral Homotopy Method for Nash Equilibrium Problem

(joint work with Xindong Tang)

Kisun Lee (UC San Diego) - kil004@ucsd.edu

AMA Colloquium Series on Young Scholars in Optimization and Data Science

Nash Equilibrium Problem

Nash Equilibrium Problem

Nash Equilibrium Problem

Nash Equilibrium Problem

Nash Equilibrium Problem

Nash Equilibrium Problem

Nash Equilibrium Problem

Nash Equilibrium Problem

Nash Equilibrium Problem

Nash equilibrium (NE)

In game theory, a state that a player can achieve the desired outcome by not changing their initial strategy.

It is a state that every player's objective is optimized for given other players' strategies.

Nash equilibrium problem

A problem finding such Nash equilibria is called the Nash equilibrium problem (NEP).

Nash equilibrium (NE)

In game theory, a state that a player can achieve the desired outcome by not changing their initial strategy.

It is a state that every player's objective is optimized for given other players' strategies.

Nash equilibrium problem

A problem finding such Nash equilibria is called the Nash equilibrium problem (NEP).

Nash equilibrium (NE)

In game theory, a state that a player can achieve the desired outcome by not changing their initial strategy.

It is a state that every player's objective is optimized for given other players' strategies.

Nash equilibrium problem

A problem finding such Nash equilibria is called the Nash equilibrium problem (NEP).

How to solve an equation?

How to find roots of $f(x) = x^5 - 3x + 1$?

How to solve an equation?

How to find roots of $f(x) = x^5 - 3x + 1$?

```
> solve(x^5 - 3x + 1)

RootOf(\_Z^5 - 3\_Z + 1, index = 1), RootOf(\_Z^5 - 3\_Z + 1, index = 2), RootOf(\_Z^5 - 3\_Z + 1, index = 3), RootOf(\_Z^5 - 3\_Z + 1, index = 4), RootOf(\_Z^5 - 3\_Z + 1, index = 5)
```

How to solve an equation?

How to find roots of $f(x) = x^5 - 3x + 1$?

```
> solve(x^5 - 3x + 1)

RootOf(\_Z^5 - 3\_Z + 1, index = 1), RootOf(\_Z^5 - 3\_Z + 1, index = 2), RootOf(\_Z^5 - 3\_Z + 1, index = 3), RootOf(\_Z^5 - 3\_Z + 1, index = 4), RootOf(\_Z^5 - 3\_Z + 1, index = 5)
```

```
> fsolve(x^5 - 3x + 1)
-1.388791984, 0.3347341419, 1.214648043
```

How to solve an equation? (Geometric point of view)

How to find roots of $f(x) = x^5 - 3x + 1$?

Consider $g(x) = x^5 - 1$ (whose roots are the 5-th roots of unity ξ_1, \ldots, ξ_5).

How to solve an equation? (Geometric point of view)

How to find roots of $f(x) = x^5 - 3x + 1$?

Consider $g(x) = x^5 - 1$ (whose roots are the 5-th roots of unity ξ_1, \ldots, ξ_5).

How to solve an equation? (Geometric point of view)

How to find roots of $f(x) = x^5 - 3x + 1$?

Consider $g(x) = x^5 - 1$ (whose roots are the 5-th roots of unity ξ_1, \ldots, ξ_5).

Then, H(x, t) = (1 - t)f(x) + tg(x) finds roots of f(x) as t goes from 1 to 0.

How to solve an equation? (Geometric point of view)

How to find roots of $f(x) = x^5 - 3x + 1$?

Consider $g(x) = x^5 - 1$ (whose roots are the 5-th roots of unity ξ_1, \ldots, ξ_5).

Then, H(x, t) = (1 - t)f(x) + tg(x) finds roots of f(x) as t goes from 1 to 0.

How to solve an equation? (Geometric point of view)

How to find roots of $f(x) = x^5 - 3x + 1$?

Consider $g(x) = x^5 - 1$ (whose roots are the 5-th roots of unity ξ_1, \ldots, ξ_5).

Then, H(x, t) = (1 - t)f(x) + tg(x) finds roots of f(x) as t goes from 1 to 0. (Homotopy method)

Nash Equilibrium Problem + Numerical Algebraic Geometry

Why Homotopy Method?

- Current known methods for NEP are based on optimization methods.
 - Heavily relies on the convexity of feasible sets.

- Previous works focus on finding one NE (or finding all NEs one-by-one).
 - Homotopy methods can be proper for finding all NEs at once.

NEP as an optimization problem.

Consider *N*-player game.

$$x_i := (x_{i,1}, \dots, x_{i,n_i}) \in \mathbb{R}^{n_i}$$

the i-th player's strategy.

$$x := (x_1, ..., x_N) \in \mathbb{R}^{n_1 + \cdots + n_N}$$

a vector for all players' strategies.

$$x_{-i} := (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$$

all strategies except i-th player's strategy.

$$f_i \in \mathbb{C}[x]$$

the i-th player's objective function.

$$g_{i,j} \in \mathbb{C}[x]$$

NEP as an optimization problem.

Consider N-player game.

$$x_i := (x_{i,1}, ..., x_{i,n_i}) \in \mathbb{R}^{n_i}$$

the i-th player's strategy.

$$x := (x_1, ..., x_N) \in \mathbb{R}^{n_1 + \cdots + n_N}$$

a vector for all players' strategies.

$$x_{-i} := (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$$

all strategies except i-th player's strategy.

$$f_i \in \mathbb{C}[x]$$

the i-th player's objective function.

$$g_{i,j} \in \mathbb{C}[x]$$

NEP as an optimization problem.

Consider N-player game.

$$x_i := (x_{i,1}, ..., x_{i,n_i}) \in \mathbb{R}^{n_i}$$

the i-th player's strategy.

$$x := (x_1, ..., x_N) \in \mathbb{R}^{n_1 + \cdots + n_N}$$

a vector for all players' strategies.

$$x_{-i} := (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$$

all strategies except i-th player's strategy.

$$f_i \in \mathbb{C}[x]$$

the i-th player's objective function.

$$g_{i,j} \in \mathbb{C}[x]$$

NEP as an optimization problem.

Consider N-player game.

$$x_i := (x_{i,1}, ..., x_{i,n_i}) \in \mathbb{R}^{n_i}$$

the i-th player's strategy.

$$x := (x_1, ..., x_N) \in \mathbb{R}^{n_1 + \cdots + n_N}$$

a vector for all players' strategies.

$$x_{-i} := (x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$$

all strategies except i-th player's strategy.

$$f_i \in \mathbb{C}[x]$$

the i-th player's objective function.

$$g_{i,j} \in \mathbb{C}[x]$$

NEP as an optimization problem.

Consider N-player game.

$$x_i := (x_{i,1}, ..., x_{i,n_i}) \in \mathbb{R}^{n_i}$$

the i-th player's strategy.

$$x := (x_1, ..., x_N) \in \mathbb{R}^{n_1 + \cdots + n_N}$$

a vector for all players' strategies.

$$x_{-i} := (x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$$

all strategies except i-th player's strategy.

$$f_i \in \mathbb{C}[x]$$

the i-th player's objective function.

$$g_{i,j} \in \mathbb{C}[x]$$

NEP as an optimization problem.

Consider N-player game.

$$x_i := (x_{i,1}, ..., x_{i,n_i}) \in \mathbb{R}^{n_i}$$

the i-th player's strategy.

$$x := (x_1, ..., x_N) \in \mathbb{R}^{n_1 + \cdots + n_N}$$

a vector for all players' strategies.

$$x_{-i} := (x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$$

all strategies except i-th player's strategy.

$$f_i \in \mathbb{C}[x]$$

the i-th player's objective function.

$$g_{i,j} \in \mathbb{C}[x]$$

NEP as an optimization problem.

Find a tuple $u=(u_1,\ldots,u_N)$ such that u_i is a optimizer of the i-th player's optimization :

$$F_i: \begin{cases} \min_{x_i \in \mathbb{R}^{n_i}} & f_i(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) \\ \text{s.t.} & g_{i,j}(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) = 0 & \text{if } j \in \mathcal{E}_i \\ & g_{i,j}(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) \geq 0 & \text{if } j \in \mathcal{F}_i \end{cases}$$

where \mathcal{E}_i and \mathcal{F}_i are sets of indices for equality constraints and inequality constraints respectively.

NEP as an optimization problem.

Find a tuple $u=(u_1,\ldots,u_N)$ such that u_i is a optimizer of the i-th player's optimization :

$$F_i: \begin{cases} \min_{x_i \in \mathbb{R}^{n_i}} & f_i(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) \\ \text{s.t.} & g_{i,j}(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) = 0 & \text{if } j \in \mathcal{E}_i \\ & g_{i,j}(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) \geq 0 & \text{if } j \in \mathcal{F}_i \end{cases}$$

where \mathscr{E}_i and \mathscr{F}_i are sets of indices for equality constraints and inequality constraints respectively.

NEP as an optimization problem.

$$F_i: \begin{cases} \min_{x_i \in \mathbb{R}^{n_i}} & f_i(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) \\ \text{s.t.} & g_{i,j}(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) = 0 & \text{if } j \in \mathcal{E}_i \\ & g_{i,j}(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) \geq 0 & \text{if } j \in \mathcal{F}_i \end{cases}$$

$$X_i := \{x_i \in \mathbb{R}^{n_i} \mid g_{i,j}(x_i) = 0, \quad g_{i,j}(x_i) \geq 0\}$$
 the feasible set of F_i

regular NEP

the feasible set X_i doesn't depend on x_{-i} .

generalized NEP (GNEP)

the feasible set X_i depends on x_{-i} .

GNEP of polynomials (GNEPP)

 $all f_i$ and $g_{i,j}$ are polynomials.

NEP as an optimization problem.

$$F_i: \begin{cases} \min_{x_i \in \mathbb{R}^{n_i}} & f_i(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) \\ \text{s.t.} & g_{i,j}(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) = 0 & \text{if } j \in \mathcal{E}_i \\ & g_{i,j}(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) \geq 0 & \text{if } j \in \mathcal{F}_i \end{cases}$$

$$X_i := \{x_i \in \mathbb{R}^{n_i} \mid g_{i,j}(x_i) = 0, \quad g_{i,j}(x_i) \geq 0\}$$
 the feasible set of F_i

regular NEP

the feasible set X_i doesn't depend on x_{-i} .

the feasible set X_i depends on x_{-i} .

generalized NEP (GNEP) GNEP of polynomials (GNEPP)

 $all f_i$ and $g_{i,i}$ are polynomials.

NEP as an optimization problem.

$$F_i: \begin{cases} \min_{x_i \in \mathbb{R}^{n_i}} & f_i(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) \\ \text{s.t.} & g_{i,j}(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) = 0 & \text{if } j \in \mathcal{E}_i \\ & g_{i,j}(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) \geq 0 & \text{if } j \in \mathcal{F}_i \end{cases}$$

$$X_i := \{x_i \in \mathbb{R}^{n_i} \mid g_{i,j}(x_i) = 0, \quad g_{i,j}(x_i) \geq 0\}$$
 the feasible set of F_i

regular NEP

the feasible set X_i doesn't depend on x_{-i} .

the feasible set X_i depends on x_{-i} .

generalized NEP (GNEP) GNEP of polynomials (GNEPP)

 $all f_i$ and $g_{i,i}$ are polynomials.

NEP as an optimization problem.

$$F_i: \begin{cases} \min_{x_i \in \mathbb{R}^{n_i}} & f_i(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) \\ \text{s.t.} & g_{i,j}(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) = 0 & \text{if } j \in \mathcal{E}_i \\ & g_{i,j}(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) \geq 0 & \text{if } j \in \mathcal{F}_i \end{cases}$$

$$X_i := \{x_i \in \mathbb{R}^{n_i} \mid g_{i,j}(x_i) = 0, \quad g_{i,j}(x_i) \geq 0\}$$
 the feasible set of F_i

regular NEP

the feasible set X_i doesn't depend on x_{-i} .

generalized NEP (GNEP)

the feasible set X_i depends on x_{-i} .

GNEP of polynomials (GNEPP)

 $all f_i$ and $g_{i,j}$ are polynomials.

NEP as an optimization problem.

$$F_i: \begin{cases} \min_{x_i \in \mathbb{R}^{n_i}} & f_i(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) \\ \text{s.t.} & g_{i,j}(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) = 0 & \text{if } j \in \mathcal{E}_i \\ & g_{i,j}(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) \geq 0 & \text{if } j \in \mathcal{F}_i \end{cases}$$

$$X_i := \{x_i \in \mathbb{R}^{n_i} \mid g_{i,j}(x_i) = 0, \quad g_{i,j}(x_i) \geq 0\}$$
 the feasible set of F_i

regular NEP

the feasible set X_i doesn't depend on x_{-i} .

generalized NEP (GNEP)

the feasible set X_i depends on x_{-i} .

GNEP of polynomials (GNEPP)

 $\operatorname{all} f_i$ and $g_{i,j}$ are polynomials.

Nash Equilibrium Problem

NEP as an optimization problem.

$$F_i: \begin{cases} \min_{x_i \in \mathbb{R}^{n_i}} & f_i(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) \\ \text{s.t.} & g_{i,j}(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) = 0 & \text{if } j \in \mathcal{E}_i \\ & g_{i,j}(u_1, \dots, u_{i-1}, x_i, u_{i+1}, \dots, u_N) \geq 0 & \text{if } j \in \mathcal{F}_i \end{cases}$$

$$X_i := \{x_i \in \mathbb{R}^{n_i} \mid g_{i,j}(x_i) = 0, \quad g_{i,j}(x_i) \geq 0\}$$
 the feasible set of F_i

regular NEP

the feasible set X_i doesn't depend on x_{-i} .

generalized NEP (GNEP)

the feasible set X_i depends on x_{-i} .

GNEP of polynomials (GNEPP)

 $all f_i$ and $g_{i,j}$ are polynomials.

KKT system

If x_i is a minimizer of F_i , then there is a Lagrange multiplier vector

 $\lambda_i := (\lambda_{i,1}, \dots, \lambda_{i,m_i})$ satisfying the first-order

Karush-Kuhn-Tucker (KKT) condition.

$$\begin{cases} \nabla_{x_i} f_i(x) - \sum_{j=1}^{m_i} \lambda_{i,j} \nabla_{x_i} g_{i,j}(x) = 0 \\ \lambda_{i,j} g_{i,j}(x) = 0 \quad \text{for all } j \\ g_{i,j}(x) = 0 \quad \text{if } j \in \mathcal{E}_i \\ g_{i,j}(x) \geq 0 \text{ and } \lambda_{i,j} \geq 0 \quad \text{if } j \in \mathcal{F}_i \end{cases}$$

KKT system

If x_i is a minimizer of F_i , then there is a Lagrange multiplier vector

 $\lambda_i := (\lambda_{i,1}, \dots, \lambda_{i,m_i})$ satisfying the first-order

Karush-Kuhn-Tucker (KKT) condition.

$$\begin{cases} \nabla_{x_i} f_i(x) - \sum_{j=1}^{m_i} \lambda_{i,j} \nabla_{x_i} g_{i,j}(x) = 0 \\ \lambda_{i,j} g_{i,j}(x) = 0 \quad \text{for all } j \\ g_{i,j}(x) = 0 \quad \text{if } j \in \mathcal{E}_i \\ g_{i,j}(x) \geq 0 \text{ and } \lambda_{i,j} \geq 0 \quad \text{if } j \in \mathcal{F}_i \end{cases}$$

KKT system

If x is a generalized Nash equilibrium, then the KKT condition holds for all $i=1,\ldots,N$.

Then, we have the following KKT system for each i = 1, ..., N.

$$F_i := \begin{cases} \nabla_{x_i} f_i(x) - \sum_{j=1}^{m_i} \lambda_{i,j} \nabla_{x_i} g_{i,j}(x) = 0 \\ g_{i,j}(x) = 0 \quad \text{for } j = 1, \dots, m_i \end{cases}$$

Find all solutions of the KKT system $F:=(F_1,\ldots,F_N)$. (a posteriori NE selection required)

KKT system

If x is a generalized Nash equilibrium, then the KKT condition holds for all i = 1, ..., N.

Then, we have the following KKT system for each i = 1,...,N.

$$F_i := \begin{cases} \nabla_{x_i} f_i(x) - \sum_{j=1}^{m_i} \lambda_{i,j} \nabla_{x_i} g_{i,j}(x) = 0 \\ g_{i,j}(x) = 0 \quad \text{for } j = 1, \dots, m_i \end{cases}$$

Find all solutions of the KKT system $F:=(F_1,\ldots,F_N)$. (a posteriori NE selection required)

KKT system

If x is a generalized Nash equilibrium, then the KKT condition holds for all i = 1, ..., N.

Then, we have the following KKT system for each i = 1,...,N.

$$F_{i} := \begin{cases} \nabla_{x_{i}} f_{i}(x) - \sum_{j=1}^{m_{i}} \lambda_{i,j} \nabla_{x_{i}} g_{i,j}(x) = 0 \\ g_{i,j}(x) = 0 \quad \text{for } j = 1, \dots, m_{i} \end{cases}$$

Find all solutions of the KKT system $F:=(F_1,\ldots,F_N)$. (a posteriori NE selection required)

Example

$$2 \text{nd player}: \begin{cases} \min_{x_2 \in \mathbb{R}^1} & \frac{1}{2} x_1^3 x_2^2 - x_1^2 x_2 - 2 x_1 x_2 \\ \text{s.t.} & 1 - x_1^2 - x_2^2 = 0 \end{cases}$$

Example

1st player:
$$\begin{cases} \min_{x_1 \in \mathbb{R}^1} & \frac{1}{2}x_1^2x_2^3 - x_1x_2^2 - 2x_1x_2 \\ \text{s.t.} & 1 - x_1x_2 \ge 0 \end{cases}$$

1st player :
$$\begin{cases} \min_{x_1 \in \mathbb{R}^1} & \frac{1}{2} x_1^2 x_2^3 - x_1 x_2^2 - 2 x_1 x_2 \\ \text{s.t.} & 1 - x_1 x_2 \ge 0 \end{cases}$$
 2nd player :
$$\begin{cases} \min_{x_2 \in \mathbb{R}^1} & \frac{1}{2} x_1^3 x_2^2 - x_1^2 x_2 - 2 x_1 x_2 \\ \text{s.t.} & 1 - x_1^2 - x_2^2 = 0 \end{cases}$$

$$F_1: \left\{ \begin{array}{l} \nabla_{x_1} f_1 - \lambda_1 \nabla_{x_1} g_{1,1} = x_1 x_2^3 - x_2^2 - 2x_2 - \lambda_1 (-x_2) \end{array} \right.$$

Example

1st player:
$$\begin{cases} \min_{x_1 \in \mathbb{R}^1} & \frac{1}{2}x_1^2x_2^3 - x_1x_2^2 - 2x_1x_2 \\ \text{s.t.} & 1 - x_1x_2 \ge 0 \end{cases}$$

1st player :
$$\begin{cases} \min_{x_1 \in \mathbb{R}^1} & \frac{1}{2} x_1^2 x_2^3 - x_1 x_2^2 - 2 x_1 x_2 \\ \text{s.t.} & 1 - x_1 x_2 \ge 0 \end{cases}$$
 2nd player :
$$\begin{cases} \min_{x_2 \in \mathbb{R}^1} & \frac{1}{2} x_1^3 x_2^2 - x_1^2 x_2 - 2 x_1 x_2 \\ \text{s.t.} & 1 - x_1^2 - x_2^2 = 0 \end{cases}$$

$$F_1: \left\{ \begin{array}{l} \nabla_{x_1} f_1 - \lambda_1 \nabla_{x_1} g_{1,1} = x_1 x_2^3 - x_2^2 - 2x_2 - \lambda_1 (-x_2) \end{array} \right.$$

Example

1st player:
$$\begin{cases} \min_{x_1 \in \mathbb{R}^1} & \frac{1}{2}x_1^2x_2^3 - x_1x_2^2 - 2x_1x_2 \\ \text{s.t.} & 1 - x_1x_2 \ge 0 \end{cases}$$

1st player :
$$\begin{cases} \min_{x_1 \in \mathbb{R}^1} & \frac{1}{2} x_1^2 x_2^3 - x_1 x_2^2 - 2 x_1 x_2 \\ \text{s.t.} & 1 - x_1 x_2 \ge 0 \end{cases}$$
 2nd player :
$$\begin{cases} \min_{x_2 \in \mathbb{R}^1} & \frac{1}{2} x_1^3 x_2^2 - x_1^2 x_2 - 2 x_1 x_2 \\ \text{s.t.} & 1 - x_1^2 - x_2^2 = 0 \end{cases}$$

$$F_1: \begin{cases} \nabla_{x_1} f_1 - \lambda_1 \nabla_{x_1} g_{1,1} = x_1 x_2^3 - x_2^2 - 2x_2 - \lambda_1 (-x_2) \\ \lambda_1 g_{1,1} = \lambda_1 (1 - x_1 x_2) \end{cases}$$

Example

1st player:
$$\begin{cases} \min_{x_1 \in \mathbb{R}^1} & \frac{1}{2}x_1^2x_2^3 - x_1x_2^2 - 2x_1x_2 \\ \text{s.t.} & 1 - x_1x_2 \ge 0 \end{cases}$$

1st player :
$$\begin{cases} \min_{x_1 \in \mathbb{R}^1} & \frac{1}{2} x_1^2 x_2^3 - x_1 x_2^2 - 2 x_1 x_2 \\ \text{s.t.} & 1 - x_1 x_2 \ge 0 \end{cases}$$
 2nd player :
$$\begin{cases} \min_{x_2 \in \mathbb{R}^1} & \frac{1}{2} x_1^3 x_2^2 - x_1^2 x_2 - 2 x_1 x_2 \\ \text{s.t.} & 1 - x_1^2 - x_2^2 = 0 \end{cases}$$

$$F_1: \left\{ \begin{array}{l} \nabla_{x_1} f_1 - \lambda_1 \nabla_{x_1} g_{1,1} = x_1 x_2^3 - x_2^2 - 2x_2 - \lambda_1 (-x_2) \\ \lambda_1 g_{1,1} = \lambda_1 (1 - x_1 x_2) \end{array} \right. F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \nabla_{x_2} g_{2,1} = x_1^3 x_2 - x_1^2 - 2x_1 - \lambda_2 (-2x_2) \\ F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \nabla_{x_2} g_{2,1} = x_1^3 x_2 - x_1^2 - 2x_1 - \lambda_2 (-2x_2) \\ F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \nabla_{x_2} g_{2,1} = x_1^3 x_2 - x_1^2 - 2x_1 - \lambda_2 (-2x_2) \\ F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \nabla_{x_2} g_{2,1} = x_1^3 x_2 - x_1^2 - 2x_1 - \lambda_2 (-2x_2) \\ F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \nabla_{x_2} g_{2,1} = x_1^3 x_2 - x_1^2 - 2x_1 - \lambda_2 (-2x_2) \\ F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \nabla_{x_2} g_{2,1} = x_1^3 x_2 - x_1^2 - 2x_1 - \lambda_2 (-2x_2) \\ F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \nabla_{x_2} g_{2,1} = x_1^3 x_2 - x_1^2 - 2x_1 - \lambda_2 (-2x_2) \\ F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \nabla_{x_2} g_{2,1} = x_1^3 x_2 - x_1^2 - 2x_1 - \lambda_2 (-2x_2) \\ F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \nabla_{x_2} g_{2,1} = x_1^3 x_2 - x_1^2 - 2x_1 - \lambda_2 (-2x_2) \\ F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \nabla_{x_2} g_{2,1} = x_1^3 x_2 - x_1^2 - 2x_1 - \lambda_2 (-2x_2) \\ F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \nabla_{x_2} g_{2,1} = x_1^3 x_2 - x_1^2 - 2x_1 - \lambda_2 (-2x_2) \\ F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \nabla_{x_2} g_{2,1} = x_1^3 x_2 - x_1^2 - 2x_1 - \lambda_2 (-2x_2) \\ F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \nabla_{x_2} g_{2,1} = x_1^3 x_2 - x_1^2 - 2x_1 - \lambda_2 (-2x_2) \\ F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \nabla_{x_2} g_{2,1} = x_1^3 x_2 - x_1^2 - 2x_1 - \lambda_2 (-2x_2) \\ F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \nabla_{x_2} g_{2,1} = x_1^3 x_2 - x_1^2 - 2x_1 - \lambda_2 (-2x_2) \\ F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \nabla_{x_2} g_{2,1} = x_1^3 x_2 - x_1^2 - 2x_1 - \lambda_2 (-2x_2) \\ F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \nabla_{x_2} g_{2,1} = x_1 - x_1$$

Example

1st player:
$$\begin{cases} \min_{x_1 \in \mathbb{R}^1} & \frac{1}{2}x_1^2x_2^3 - x_1x_2^2 - 2x_1x_2 \\ \text{s.t.} & 1 - x_1x_2 \ge 0 \end{cases}$$

1st player :
$$\begin{cases} \min_{x_1 \in \mathbb{R}^1} & \frac{1}{2} x_1^2 x_2^3 - x_1 x_2^2 - 2 x_1 x_2 \\ \text{s.t.} & 1 - x_1 x_2 \ge 0 \end{cases}$$
 2nd player :
$$\begin{cases} \min_{x_2 \in \mathbb{R}^1} & \frac{1}{2} x_1^3 x_2^2 - x_1^2 x_2 - 2 x_1 x_2 \\ \text{s.t.} & 1 - x_1^2 - x_2^2 = 0 \end{cases}$$

$$F_1: \left\{ \begin{array}{l} \nabla_{x_1} f_1 - \lambda_1 \, \nabla_{x_1} g_{1,1} = x_1 x_2^3 - x_2^2 - 2 x_2 - \lambda_1 (-x_2) \\ \lambda_1 g_{1,1} = \lambda_1 (1 - x_1 x_2) \end{array} \right. \quad F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \, \nabla_{x_2} g_{2,1} = x_1^3 x_2 - x_1^2 - 2 x_1 - \lambda_2 (-2 x_2) \\ g_{2,1} = 1 - x_1^2 - x_2^2 \end{array} \right.$$

Example

Consider 2-player GNEP

1st player:
$$\begin{cases} \min_{x_1 \in \mathbb{R}^1} & \frac{1}{2}x_1^2x_2^3 - x_1x_2^2 - 2x_1x_2 \\ \text{s.t.} & 1 - x_1x_2 \ge 0 \end{cases}$$

1st player :
$$\begin{cases} \min_{x_1 \in \mathbb{R}^1} & \frac{1}{2} x_1^2 x_2^3 - x_1 x_2^2 - 2 x_1 x_2 \\ \text{s.t.} & 1 - x_1 x_2 \ge 0 \end{cases}$$
 2nd player :
$$\begin{cases} \min_{x_2 \in \mathbb{R}^1} & \frac{1}{2} x_1^3 x_2^2 - x_1^2 x_2 - 2 x_1 x_2 \\ \text{s.t.} & 1 - x_1^2 - x_2^2 = 0 \end{cases}$$

$$F_1: \left\{ \begin{array}{l} \nabla_{x_1} f_1 - \lambda_1 \nabla_{x_1} g_{1,1} = x_1 x_2^3 - x_2^2 - 2x_2 - \lambda_1 (-x_2) \\ \lambda_1 g_{1,1} = \lambda_1 (1 - x_1 x_2) \end{array} \right. F_2: \left\{ \begin{array}{l} \nabla_{x_2} f_2 - \lambda_2 \nabla_{x_2} g_{2,1} = x_1^3 x_2 - x_1^2 - 2x_1 - \lambda_2 (-2x_2) \\ g_{2,1} = 1 - x_1^2 - x_2^2 \end{array} \right.$$

These systems provide the system $F := \{F_1, F_2\}$

Finding solutions by tracking homotopy

$$H(t,x) = t\gamma G(x) + (1-t)F(x), \quad t \in [0,1]$$

Solve F (target system) by constructing a homotopy with G (start system) whose solutions are known.

How to choose start system?

The choice of start system determines the number of homotopy paths to track.

Bézout homotopy (Bézout bound = product of degrees)

polyhedral homotopy (BKK bound)

multihomogeneous start system

How to choose start system?

The choice of start system determines the number of homotopy paths to track.

Bézout homotopy (Bézout bound = product of degrees)

polyhedral homotopy (BKK bound)

multihomogeneous start system

How to choose start system?

The choice of start system determines the number of homotopy paths to track.

Bézout homotopy (Bézout bound = product of degrees)

polyhedral homotopy (BKK bound)

multihomogeneous start system

Bernstein theorem

Theorem [Bernstein 1975]. $F:=\{f_1,\ldots,f_n\}\subset\mathbb{C}[x_1,\ldots,x_n]$: a square polynomial system.

 Q_i : the Newton polytope of f_i . Then, (# isolated roots in $(\mathbb{C}\setminus\{0\})^n$) $\leq MV(Q_1,\ldots,Q_n)$.

 $MV(Q_1,...,Q_n)$ is the **mixed volume** of $Q_1,...,Q_n$.

The mixed volume above is called the BKK bound.

Bernstein theorem

Theorem [Bernstein 1975]. $F:=\{f_1,\ldots,f_n\}\subset\mathbb{C}[x_1,\ldots,x_n]$: a square polynomial system.

 Q_i : the Newton polytope of f_i . Then, (# isolated roots in $(\mathbb{C}\setminus\{0\})^n$) $\leq MV(Q_1,\ldots,Q_n)$.

 $MV(Q_1,...,Q_n)$ is the **mixed volume** of $Q_1,...,Q_n$.

The mixed volume above is called the BKK bound.

Bernstein theorem

Theorem [Bernstein 1975]. $F:=\{f_1,\ldots,f_n\}\subset\mathbb{C}[x_1,\ldots,x_n]$: a square polynomial system.

 Q_i : the Newton polytope of f_i . Then, (# isolated roots in $(\mathbb{C}\setminus\{0\})^n$) $\leq MV(Q_1,\ldots,Q_n)$.

 $MV(Q_1,...,Q_n)$ is the **mixed volume** of $Q_1,...,Q_n$.

The mixed volume above is called the BKK bound.

Bernstein theorem

Theorem [Bernstein 1975]. $F:=\{f_1,\ldots,f_n\}\subset\mathbb{C}[x_1,\ldots,x_n]$: a square polynomial system.

 Q_i : the Newton polytope of f_i . Then, (# isolated roots in $(\mathbb{C}\setminus\{0\})^n$) $\leq MV(Q_1,\ldots,Q_n)$.

 $MV(Q_1,...,Q_n)$ is the **mixed volume** of $Q_1,...,Q_n$.

The mixed volume above is called the BKK bound.

Mixed volume

```
f\in\mathbb{C}[x_1,\ldots,x_n]: a polynomial. A:=\operatorname{supp}(f): the support of f (the set of exponents of monomials appear in f). Q:=\operatorname{conv}(A)\subset\mathbb{R}^n: the Newton polytope (the convex hull of A). f_1,\ldots,f_n: polynomials with Newton polytopes Q_1,\ldots,Q_n. MV(Q_1,\ldots,Q_n): the mixed volume of Q_1,\ldots,Q_n. the coefficient of \lambda_1\cdots\lambda_n term in a polynomial \operatorname{Vol}(\lambda_1Q_1+\cdots+\lambda_nQ_n).
```

Mixed volume

```
f\in\mathbb{C}[x_1,\ldots,x_n]: a polynomial. A:=\operatorname{supp}(f): the support of f (the set of exponents of monomials appear in f). Q:=\operatorname{conv}(A)\subset\mathbb{R}^n: the Newton polytope (the convex hull of A). f_1,\ldots,f_n: polynomials with Newton polytopes Q_1,\ldots,Q_n. MV(Q_1,\ldots,Q_n): the mixed volume of Q_1,\ldots,Q_n. the coefficient of \lambda_1\cdots\lambda_n term in a polynomial \operatorname{Vol}(\lambda_1Q_1+\cdots+\lambda_nQ_n).
```

Mixed volume

```
f\in\mathbb{C}[x_1,\ldots,x_n]: a polynomial. A:=\operatorname{supp}(f): the support of f (the set of exponents of monomials appear in f). Q:=\operatorname{conv}(A)\subset\mathbb{R}^n: the Newton polytope (the convex hull of A). f_1,\ldots,f_n: polynomials with Newton polytopes Q_1,\ldots,Q_n. MV(Q_1,\ldots,Q_n): the mixed volume of Q_1,\ldots,Q_n. the coefficient of \lambda_1\cdots\lambda_n term in a polynomial \operatorname{Vol}(\lambda_1Q_1+\cdots+\lambda_nQ_n).
```

Example $f_1(x, y) = a_1 x^2 + b_1 x + c_1 y + d_1$ and $f_2(x, y) = a_2 x y + b_2 x + c_2 y + d_2$ $\Rightarrow A_1 = \{(2,0), (1,0), (0,1), (0,0)\}$ and $A_2 = \{(1,1), (1,0), (0,1), (0,0)\}$

 $2\lambda_1$

$$\Rightarrow \lambda_{1}$$

$$2\lambda_{1}$$

$$2\lambda_{1}$$

$$\lambda_{2}$$

$$\Rightarrow Vol(\lambda_{1}Q_{1} + \lambda_{2}Q_{2}) = \lambda_{1}^{2} + 3\lambda_{1}\lambda_{2} + \lambda_{2}^{2}$$

$$\Rightarrow MV(Q_{1}, Q_{2}) = 3$$

Example $f_1(x, y) = a_1x^2 + b_1x + c_1y + d_1$ and $f_2(x, y) = a_2xy + b_2x + c_2y + d_2$ $\Rightarrow A_1 = \{(2,0), (1,0), (0,1), (0,0)\}$ and $A_2 = \{(1,1), (1,0), (0,1), (0,0)\}$

 $2\lambda_1$

$$\Rightarrow Vol(\lambda_1 Q_1 + \lambda_2 Q_2) = \lambda_1^2 + 3\lambda_1 \lambda_2 + \lambda_2^2$$
$$\Rightarrow MV(Q_1, Q_2) = 3$$

Example $f_1(x, y) = a_1 x^2 + b_1 x + c_1 y + d_1 \text{ and } f_2(x, y) = a_2 x y + b_2 x + c_2 y + d_2$ $\Rightarrow A_1 = \{(2,0), (1,0), (0,1), (0,0)\} \text{ and } A_2 = \{(1,1), (1,0), (0,1), (0,0)\}$

$$\Rightarrow \lambda_1 \qquad \lambda_2 Q_2$$

$$\lambda_1 \qquad \lambda_2 \qquad \lambda_2$$

$$\Rightarrow Vol(\lambda_1 Q_1 + \lambda_2 Q_2) = \lambda_1^2 + 3\lambda_1 \lambda_2 + \lambda_2^2$$
$$\Rightarrow MV(Q_1, Q_2) = 3$$

Example $f_1(x, y) = a_1 x^2 + b_1 x + c_1 y + d_1$ and $f_2(x, y) = a_2 x y + b_2 x + c_2 y + d_2$ $\Rightarrow A_1 = \{(2,0), (1,0), (0,1), (0,0)\}$ and $A_2 = \{(1,1), (1,0), (0,1), (0,0)\}$

$$\Rightarrow Vol(\lambda_1 Q_1 + \lambda_2 Q_2) = \lambda_1^2 + 3\lambda_1 \lambda_2 + \lambda_2^2$$
$$\Rightarrow MV(Q_1, Q_2) = 3$$

Example $f_1(x, y) = a_1 x^2 + b_1 x + c_1 y + d_1$ and $f_2(x, y) = a_2 x y + b_2 x + c_2 y + d_2$ $\Rightarrow A_1 = \{(2,0), (1,0), (0,1), (0,0)\}$ and $A_2 = \{(1,1), (1,0), (0,1), (0,0)\}$

$$\Rightarrow \lambda_{1} \qquad \lambda_{1}Q_{1} \qquad \lambda_{2}Q_{2}$$

$$2\lambda_{1} \qquad \lambda_{2} \qquad \lambda_{2}$$

$$\Rightarrow Vol(\lambda_1 Q_1 + \lambda_2 Q_2) = \lambda_1^2 + 3\lambda_1 \lambda_2 + \lambda_2^2$$
$$\Rightarrow MV(Q_1, Q_2) = 3$$

Example $f_1(x, y) = a_1 x^2 + b_1 x + c_1 y + d_1$ and $f_2(x, y) = a_2 x y + b_2 x + c_2 y + d_2$ $\Rightarrow A_1 = \{(2,0), (1,0), (0,1), (0,0)\}$ and $A_2 = \{(1,1), (1,0), (0,1), (0,0)\}$

$$\Rightarrow \operatorname{Vol}(\lambda_1 Q_1 + \lambda_2 Q_2) = \lambda_1^2 + 3\lambda_1 \lambda_2 + \lambda_2^2$$
$$\Rightarrow MV(Q_1, Q_2) = 3$$

Example $f_1(x, y) = a_1 x^2 + b_1 x + c_1 y + d_1 \text{ and } f_2(x, y) = a_2 x y + b_2 x + c_2 y + d_2$ $\Rightarrow A_1 = \{(2,0), (1,0), (0,1), (0,0)\} \text{ and } A_2 = \{(1,1), (1,0), (0,1), (0,0)\}$

$$\Rightarrow Vol(\lambda_1 Q_1 + \lambda_2 Q_2) = \lambda_1^2 + 3\lambda_1 \lambda_2 + \lambda_2^2$$
$$\Rightarrow MV(Q_1, Q_2) = 3$$

Example $f_1(x, y) = a_1 x^2 + b_1 x + c_1 y + d_1 \text{ and } f_2(x, y) = a_2 x y + b_2 x + c_2 y + d_2$ $\Rightarrow A_1 = \{(2,0), (1,0), (0,1), (0,0)\} \text{ and } A_2 = \{(1,1), (1,0), (0,1), (0,0)\}$

$$\Rightarrow Vol(\lambda_1 Q_1 + \lambda_2 Q_2) = \lambda_1^2 + 3\lambda_1 \lambda_2 + \lambda_2^2$$
$$\Rightarrow MV(Q_1, Q_2) = 3$$

The second part of Bernstein theorem

Theorem [Bernstein 1975]. $F := \{f_1, ..., f_n\} \subset \mathbb{C}[x_1, ..., x_n]$: a square polynomial system.

 Q_i : the Newton polytope of f_i . Then, (# isolated roots in $(\mathbb{C}\setminus\{0\})^n$) $\leq MV(Q_1, ..., Q_n)$.

The equality holds if and only if the **facial system** $F^w := \{f_1^w, ..., f_n^w\}$ has no solutions in $(\mathbb{C} \setminus \{0\})^n$ for any weight vector $w \in \mathbb{Z}^n$.

When a system achieves the BKK bound, we say that the system is Bernstein generic.

The second part of Bernstein theorem

Theorem [Bernstein 1975]. $F := \{f_1, ..., f_n\} \subset \mathbb{C}[x_1, ..., x_n]$: a square polynomial system.

 Q_i : the Newton polytope of f_i . Then, (# isolated roots in $(\mathbb{C}\setminus\{0\})^n$) $\leq MV(Q_1, ..., Q_n)$.

The equality holds if and only if the **facial system** $F^w := \{f_1^w, ..., f_n^w\}$ has no solutions in $(\mathbb{C} \setminus \{0\})^n$ for any weight vector $w \in \mathbb{Z}^n$.

When a system achieves the BKK bound, we say that the system is Bernstein generic.

The second part of Bernstein theorem

Theorem [Bernstein 1975]. $F:=\{f_1,\ldots,f_n\}\subset\mathbb{C}[x_1,\ldots,x_n]$: a square polynomial system.

 Q_i : the Newton polytope of f_i . Then, (# isolated roots in $(\mathbb{C}\setminus\{0\})^n$) $\leq MV(Q_1,...,Q_n)$. The equality holds if and only if the **facial system** $F^w := \{f_1^w,...,f_n^w\}$ has no solutions in $(\mathbb{C}\setminus\{0\})^n$ for any weight vector $w \in \mathbb{Z}^n$.

When a system achieves the BKK bound, we say that the system is Bernstein generic.

Facial system

$$f = \sum_{a \in A} c_a x^a \in \mathbb{C}[x_1, \dots, x_n]$$

a polynomial with the support $A \subset \mathbb{Z}^n$.

$$w \in \mathbb{Z}^n$$

a weight vector.

$$A^w := \{a \in A \mid \langle w, a \rangle \text{ achieves its minimum} \}$$

the **face** of A with respect to w .

Define
$$f^w := \sum_{a \in A^w} c_a x^a$$
.

$$F^{w} := \{f_{1}^{w}, ..., f_{n}^{w}\}$$

the facial system of \boldsymbol{F} with respect to \boldsymbol{w}

Facial system

$$f = \sum_{a \in A} c_a x^a \in \mathbb{C}[x_1, ..., x_n]$$

a polynomial with the support $A \subset \mathbb{Z}^n$.

$$w \in \mathbb{Z}^n$$

a weight vector.

$$A^w := \{a \in A \mid \langle w, a \rangle \text{ achieves its minimum} \}$$
 the **face** of A with respect to w .

Define
$$f^w := \sum_{a \in A^w} c_a x^a$$
.

$$F^{w} := \{f_{1}^{w}, ..., f_{n}^{w}\}$$

the facial system of ${\cal F}$ with respect to ${\it w}$

Facial system

$$f = \sum_{a \in A} c_a x^a \in \mathbb{C}[x_1, \dots, x_n]$$

a polynomial with the support $A \subset \mathbb{Z}^n$.

$$w \in \mathbb{Z}^n$$

a weight vector.

$$A^w := \{a \in A \mid \langle w, a \rangle \text{ achieves its minimum} \}$$
 the **face** of A with respect to w .

Define
$$f^w := \sum_{a \in A^w} c_a x^a$$
.

$$F^{w} := \{f_{1}^{w}, \dots, f_{n}^{w}\}$$

the facial system of \boldsymbol{F} with respect to \boldsymbol{w}

Facial system

$$f = \sum_{a \in A} c_a x^a \in \mathbb{C}[x_1, ..., x_n]$$

a polynomial with the support $A \subset \mathbb{Z}^n$.

$$w \in \mathbb{Z}^n$$

a weight vector.

$$A^w := \{a \in A \mid \langle w, a \rangle \text{ achieves its minimum} \}$$
 the **face** of A with respect to w .

Define
$$f^W := \sum_{a \in A^W} c_a x^a$$
.

$$F^{w} := \{f_{1}^{w}, ..., f_{n}^{w}\}$$

the facial system of ${\it F}$ with respect to ${\it w}$

Facial system

$$f = \sum_{a \in A} c_a x^a \in \mathbb{C}[x_1, \dots, x_n]$$

a polynomial with the support $A \subset \mathbb{Z}^n$.

$$w \in \mathbb{Z}^n$$

a weight vector.

$$A^w := \{a \in A \mid \langle w, a \rangle \text{ achieves its minimum} \}$$
 the **face** of A with respect to w .

Define
$$f^w := \sum_{a \in A^w} c_a x^a$$
.

$$F^{w} := \{f_{1}^{w}, ..., f_{n}^{w}\}$$

the facial system of \boldsymbol{F} with respect to \boldsymbol{w}

Facial system

$$f = \sum_{a \in A} c_a x^a \in \mathbb{C}[x_1, ..., x_n]$$

a polynomial with the support $A \subset \mathbb{Z}^n$.

$$w \in \mathbb{Z}^n$$

a weight vector.

$$A^w := \{a \in A \mid \langle w, a \rangle \text{ achieves its minimum} \}$$
 the **face** of A with respect to w .

Define
$$f^w := \sum_{a \in A^w} c_a x^a$$
.

$$F^w := \{f_1^w, ..., f_n^w\}$$

the facial system of ${\cal F}$ with respect to ${\it w}$

Example
$$f = c_1 x y^4 + c_2 x y z + c_3 x y + c_4 y z + c_5 x z + c_6 x + c_7 y + c_8 z + c_9$$
.

$$w = (-1,0,0)$$

$$f^w = c_1 x y^4 + c_2 x y z + c_3 x y + c_5 x z + c_6 x$$

Example
$$f = c_1 xy^4 + c_2 xyz + c_3 xy + c_4 yz + c_5 xz + c_6 x + c_7 y + c_8 z + c_9$$
.

$$w = (-1,0,0)$$

$$Q$$

$$f^w = c_1 x y^4 + c_2 x y z + c_3 x y + c_5 x z + c_6 x$$

Example $f = c_1 xy^4 + c_2 xyz + c_3 xy + c_4 yz + c_5 xz + c_6 x + c_7 y + c_8 z + c_9$.

$$w = (0, -1, -3)$$

$$f^w = c_1 x y^4 + c_2 x y z + c_4 y z$$

Solving KKT System

Theorem [L.-Tang]. Suppose that for each $i=1,\ldots,N$, polynomials f_i and $g_{i,j}$ are generic for all $j=1,\ldots,m_i$. Then the KKT system $F=\{F_1,\ldots,F_N\}$ is Bernstein general.

Hence, for a generic KKT system, the polyhedral homotopy method can find all solutions.

Solving KKT System

Theorem [L.-Tang]. Suppose that for each $i=1,\ldots,N$, polynomials f_i and $g_{i,j}$ are generic for all $j=1,\ldots,m_i$. Then the KKT system $F=\{F_1,\ldots,F_N\}$ is Bernstein general.

Hence, for a generic KKT system, the polyhedral homotopy method can find all solutions.

 $\mathcal{H}_{\mathbb{C}}$: the set of KKT points (x, λ) obtained by the homotopy method.

 \mathcal{K} : the set of real KKT points with $\lambda \geq 0$ and $g_{i,j}(x) \geq 0$.

$$\mathcal{K} = \{(x, \lambda) \in \mathcal{K}_{\mathbb{C}} \cap \mathbb{R}^N \mid \lambda_{i,j} \ge 0, \ g_{i,j}(x) \ge 0\}$$

 $\mathcal{P}:=\pi_{\chi}(\mathcal{K})$: a projection of \mathcal{K} onto x coordinates.

 $\mathcal{H}_{\mathbb{C}}$: the set of KKT points (x, λ) obtained by the homotopy method.

 \mathcal{H} : the set of real KKT points with $\lambda \geq 0$ and $g_{i,j}(x) \geq 0$.

$$\mathcal{K} = \{(x, \lambda) \in \mathcal{K}_{\mathbb{C}} \cap \mathbb{R}^N \mid \lambda_{i,j} \ge 0, \ g_{i,j}(x) \ge 0\}$$

 $\mathcal{P}:=\pi_{x}(\mathcal{K})$: a projection of \mathcal{K} onto x coordinates.

 $\mathcal{H}_{\mathbb{C}}$: the set of KKT points (x, λ) obtained by the homotopy method.

 \mathcal{K} : the set of real KKT points with $\lambda \geq 0$ and $g_{i,j}(x) \geq 0$.

$$\mathcal{K} = \{(x, \lambda) \in \mathcal{K}_{\mathbb{C}} \cap \mathbb{R}^N \mid \lambda_{i,j} \ge 0, \ g_{i,j}(x) \ge 0\}$$

 $\mathscr{P}:=\pi_{\chi}(\mathscr{K})$: a projection of \mathscr{K} onto x coordinates.

For $u = (u_1, ..., u_N) \in \mathcal{P}$, consider the following optimization problem:

$$\begin{cases} \delta_i := \min_{x_i \in \mathbb{R}^{n_i}} & f_i(x_i, u_{-i}) - f_i(u_i, u_{-i}) \\ & \text{s.t.} & g_{i,j}(x_i, u_{-i}) = 0 & \text{if } j \in \mathcal{E}_i \\ & g_{i,j}(x_i, u_{-i}) \geq 0 & \text{if } j \in \mathcal{F}_i \end{cases}$$

If u is a GNE, then each u_i is a minimizer.

We solve the optimization problem using the moment-SOS relaxation.

Example 1) Non-convex Problem

The KKT system has the mixed volume 480, Solving using HomotopyContinuation.jl, it 480 KKT points and gives a unique GNE in 5.75 seconds (4 seconds to compute KKT points, 1.75 seconds for selecting).

(0.7636, 1, 0.47, -0.2727)

Example 1) Non-convex Problem

The KKT system has the mixed volume 480, Solving using HomotopyContinuation.jl, it 480 KKT points and gives a unique GNE in 5.75 seconds (4 seconds to compute KKT points, 1.75 seconds for selecting).

$$(0.7636, 1, 0.47, -0.2727)$$

Example 2) Convex Problem

Example A.3 of [Facchinei-Kanzow 2010]

A 3-player game with objectives $f_i = \frac{1}{2} x_i^{\mathsf{T}} A_i x_i + x_i^{\mathsf{T}} (B_i x_{-i} + b_i)$ where $A_1 = \begin{bmatrix} 20 & 5 & 3 \\ 5 & 5 & -5 \\ 3 & -5 & 15 \end{bmatrix}, A_2 = \begin{bmatrix} 11 & -1 \\ -1 & 9 \end{bmatrix}, A_3 = \begin{bmatrix} 48 & 39 \\ 39 & 53 \end{bmatrix},$

$$B_{1} = \begin{bmatrix} -6 & 10 & 11 & 20 \\ 10 & -4 & -17 & 9 \\ 15 & 8 & -22 & 21 \end{bmatrix}, B_{2} = \begin{bmatrix} 20 & 1 & -3 & 12 & 1 \\ 10 & -4 & 8 & 16 & 21 \end{bmatrix}, B_{3} = \begin{bmatrix} 10 & -2 & 22 & 12 & 16 \\ 9 & 19 & 21 & -4 & 20 \end{bmatrix}, b_{1} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, b_{2} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, b_{3} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}.$$

Constraints are given $-10 \le x \le 10$, $g_{1,1} = 20 - x_{1,1} - x_{1,2} - x_{1,3} \ge 0$, $g_{1,2} = x_{2,1} - x_{3,2} - x_{1,1} - x_{1,2} + x_{1,3} + 5 \ge 0$, $g_{2,1} = x_{1,2} + x_{1,3} - x_{2,1} + x_{2,2} + 7 \ge 0$, $g_{3,1} = x_{1,1} + x_{1,3} - x_{2,1} - x_{3,2} + 4 \ge 0$.

Example 2) Convex Problem

Example A.3 of [Facchinei-Kanzow 2010]

The mixed volume: 12096

Solution found: 11631 KKT points

GNE found: 5 GNEs found with 4 newly found

Elapsed time: 177 seconds

Comparison

Comparison with known methods on Example 1) and 2):

Interior point method (Dreves-Facchinei-Kanzow-Sagratella 2011)

Augmented Lagrangian method (Kanzow-Steck 2016)

Gauss-Seidel method (Nie-Tang-Xu 2021)

Semidefinite relaxation (Nie-Tang 2021)

Comparison

IPM: Interior point method, ALM: Augmented Lagrangian method, GSM: Gauss-Seidel method, SDP: Semidefinite relaxation,

PHC: Solved by using the polyhedral homotopy method (HomotopyContinuation.jl)

		IPM	ALM	GSM	SDP	PHC
Example 1)	Time	Fail	Fail	11.47	17.89	5.75
	Error			$4 \cdot 10^{-7}$	$1 \cdot 10^{-6}$	$2 \cdot 10^{-8}$
Example 2)	Time	3.12	1.50	Fail	11.55	177
	Error	$2 \cdot 10^{-7}$	$1 \cdot 10^{-7}$		$2 \cdot 10^{-7}$	$1 \cdot 10^{-6}$ (5 GNEs)

Example 3) Random nonconvex GNEP

Consider N-player GNEP whose i-th player's optimization problem is

$$\begin{cases} \min_{x_i \in \mathbb{R}^{n_i}} & f_i(x_i, x_{-i}) \\ \text{s.t.} & -x_i^{\top} A_i x_i + x_{-i}^{\top} B_i x_i + c_i^{\top} x \geq d_i \end{cases}$$
 where $A_i = R_i^{\top} R_i$ with randomly generated $R_i \in \mathbb{R}^{n_i \times n_i}$ and $B_i \in \mathbb{R}^{n_i \times (n-n_i)}, c_i \in \mathbb{R}^n, d_i \in \mathbb{R}$.

The objective f_i is a dense polynomial of degree d with randomly generated real coefficients.

For various (d, N, n_i) -values, solve the problem 100 times and record the success rate (for finding mixed volume many KKT points) and elapsed time (solving KKT + selecting GNEs).

Example 3) Random nonconvex GNEP

Consider N-player GNEP whose i-th player's optimization problem is

$$\begin{cases} \min_{x_i \in \mathbb{R}^{n_i}} \ f_i(x_i, x_{-i}) \\ \text{s.t.} \ -x_i^\top A_i x_i + x_{-i}^\top B_i x_i + c_i^\top x \geq d_i \end{cases}$$
 where $A_i = R_i^\top R_i$ with randomly generated $R_i \in \mathbb{R}^{n_i \times n_i}$ and $B_i \in \mathbb{R}^{n_i \times (n-n_i)}, c_i \in \mathbb{R}^n, d_i \in \mathbb{R}$.

The objective f_i is a dense polynomial of degree d with randomly generated real coefficients.

For various (d, N, n_i) -values, solve the problem 100 times and record the success rate (for finding mixed volume many KKT points) and elapsed time (solving KKT + selecting GNEs).

Example 3) Random nonconvex GNEP

d	N	n_i	Mixed volume	Success rate	Average time
2	2	2	25	100 %	0.0563 + 1.1330
	2	3	49	100 %	0.1802 + 1.5098
	3	2	125	100 %	0.8473 + 3.1890
3	2	2	100	100 %	0.1893 + 2.5667
	2	3	484	100 %	2.1800 + 5.7500
	3	2	1000	97 %	5.2550 + 14.4360
4	2	2	289	100 %	0.8270 + 4.4256
	2	3	2809	95 %	24.5330 + 21.9054
	3	2	4913	95 %	44.0899 + 40.6792

Thank you for your attention