Math 1552 Summer 2019
Worksheet 5 (§ 5.6 Area Bounded by Curves)
Name:
Section: \qquad

1. Find the area of the region bounded by the curves.
(a) $y=x^{2}-2$ and $y=2$.
(b) $y=x^{2}$ and $y=-x^{2}+4 x$. (Hint: use the complete square $x^{2}+a x+b=$ $\left.\left(x+\frac{a}{2}\right)^{2}+b-\frac{a^{2}}{4}\right)$
(c) $x-y^{2}=0$ and $x+2 y^{2}=3$.
(d) $x=y^{3}-y^{2}$ and $x=2 y$.
2. Find the area of the region bounded bby $y=2 \sin x$ and $y=\sin (2 x)$ on $[0, \pi]$ using the following procedure:
(a) Using the identity $\sin (2 x)=2 \sin x \cos x$, solve the equation $2 \sin x=\sin (2 x)$ on $0 \leq x \leq \pi$.
(b) Reminding the fact that $y=2 f(x)(y=f(2 x)$, resp.) has a graph obtained by stretching (shrinking, resp.) that of $y=f(x)$ twice to y-axis (x-axis, resp.) direction, draw the graph of $y=2 \sin x$ and $y=\sin (2 x)$.
(c) Find the area based on the answers from (a) and (b).
3. Find the area of the region in the first quadrant that is bounded above by the curve $y=e^{2 x}$, below by the curve $y=e^{x}$, and on the right by the line $x=\ln 3$. (Hint: $e^{\ln b}=b$)
