Math 1552 Summer 2019 Worksheet 5 (§ 5.6 Area Bounded by Curves) Name: ______ Section: _____

- 1. Find the area of the region bounded by the curves.
 - (a) $y = x^2 2$ and y = 2.

(b)
$$y = x^2$$
 and $y = -x^2 + 4x$. (Hint: use the complete square $x^2 + ax + b = (x + \frac{a}{2})^2 + b - \frac{a^2}{4}$)

(c) $x - y^2 = 0$ and $x + 2y^2 = 3$.

(d)
$$x = y^3 - y^2$$
 and $x = 2y$.

- 2. Find the area of the region bounded bby $y = 2 \sin x$ and $y = \sin(2x)$ on $[0, \pi]$ using the following procedure:
 - (a) Using the identity $\sin(2x) = 2 \sin x \cos x$, solve the equation $2 \sin x = \sin(2x)$ on $0 \le x \le \pi$.

(b) Reminding the fact that y = 2f(x) (y = f(2x), resp.) has a graph obtained by stretching (shrinking, resp.) that of y = f(x) twice to y-axis (x-axis, resp.) direction, draw the graph of $y = 2 \sin x$ and $y = \sin(2x)$.

(c) Find the area based on the answers from (a) and (b).

3. Find the area of the region in the first quadrant that is bounded above by the curve $y = e^{2x}$, below by the curve $y = e^x$, and on the right by the line $x = \ln 3$. (Hint: $e^{\ln b} = b$)