Ront 2 symmetric matrices, tropicalization & algebraic matroid Joint work with May Cai & Josephine Yu

Kisun Lee Clemson University

Troptcal algebra

Tropical algebra

tropical semiring

Troptcal algebra tropical semiring $(\mathbb{R} \cup \mathbb{E} \otimes \mathbb{F}, \bigoplus, \odot)$

Troptcal algebra tropical semiring $(\mathbb{R} \cup 1 \otimes 5, \oplus, \odot)$ where $x \oplus g = \min \{x, y\}$ $x \odot g = x + g$

Tropical algebra tropical semiring $(\mathbb{R} \cup 2005, \oplus, \odot)$ where $\times \oplus g = \min 2x_i g^i$ $\times \odot g = x + g$

tropical matrix : a matrix with entries in the tropical semiring

Linear algebra

Linear algebra we say that a matrix has rank r if all its (r+1) x (r+1) minors vanish

Linear algebra

we say that a matrix has rank r of all THS (rH) × (rH) minors vanish

MAIN INTEREST

study a tropical counterpart of rank

Linear algebra

we say that a matrix has rank r of all THS (rH) × (rH) minors vanish

MAIN INTEREST study a tropical counterpart of rank (tropical rank)

K: a field with a valuation (e.g. C or Ctitit)

$$f(x) = \prod_{\alpha \in \mathbb{Z}^n} C_{\alpha} \times^{\alpha}$$

: a (Laurent) polynomial

$$f(x) = \prod_{\substack{\alpha \in \mathbb{Z}^n \\ \beta \in \mathbb{Z}^n}} C_{\alpha} \times^{n} + \lim_{\substack{\alpha \in \mathbb{Z}^n \\ \gamma \in \mathbb{Z}^n \\ \gamma \in \mathbb{Z}^n}} I_{\alpha} \times^{n} + \lim_{\substack{\alpha \in \mathbb{Z}^n \\ \gamma \in \mathbb{Z}^n \\ \gamma \in \mathbb{Z}^n}} I_{\alpha} \times^{n} I_{\alpha}$$

$$f(x) = \prod_{\substack{\alpha \in \mathbb{Z}^n \\ \alpha \in \mathbb{Z}^n}} C_{\alpha} \times^{\alpha} + top(f)(\omega) = \min_{\substack{d \in \mathbb{Z}^n \\ d \in \mathbb{Z}^n}} [val(C_{\alpha}) + \prod_{\substack{i=1 \\ i=1}}^n i) = i$$

: a (Laurent) : a tropicalization of f.
polynomial

Define trop (V(f))

Define

$$trop(v(f)) = 2w \in \mathbb{R}^{n}$$
 the min of $trop(f)$
 $attained twice$

Define

$$trop(v(f)) = 2w \in \mathbb{R}^{n}$$
 | the min of $trop(f)$
 $affained twice$
 $(tropical hypersurface)$

Define

$$trop(v(f)) = 2w \in \mathbb{R}^{n}$$
 | the min of $trop(f)$
attained $twice$

ex) f=x+y+1

Define

$$trop(v(f)) = 2w \in \mathbb{R}^{n}$$
 | the min of $trop(f)$ f
 $attorined twice$ (f)
 e_{x}) $f = x + y + 1 \implies trop(f) = min 2x \cdot y, o$

Define

$$trop(v(f)) = \frac{1}{2}w \in \mathbb{R}^{n}$$
 | the min of $trop(f)$ f
 $attained twice$ f
 $ex) f = x+y+1 \implies trop(f) = min \frac{1}{2}x_{i}y_{i}, o$
 $x^{(0,0)}$

Define

$$trop(v(f)) = \frac{1}{2}w \in \mathbb{R}^{n}$$
 | the min of $trop(f)$ f
 $attained twice$ |
 $ex) f = x + y + 1 \implies trop(f) = trop(x, y, 0)$

Define

$$trop(V(f)) = \frac{1}{2}w \in \mathbb{R}^{n}$$
 | the min of $trop(f)$ f
 $attorined twice$ |
 $ex) f = x + y + 1 \implies trop(f) = trop(x, y, 0)$
 $(0, 0)$

Define

$$trop(V(f)) = \frac{1}{2}w \in \mathbb{R}^{n}$$
 | the min of $trop(f)$ f
 $attorined twice$ |
 $ex) f = x + y + 1 \implies trop(f) = trop(x, y, 0)$
 $(0, 0)$

Define

$$trop(v(f)) = \frac{1}{2}w \in \mathbb{R}^{n}$$
 | the min of $trop(f)$
attained $twice$

I: an ideal in $K[x_1,...,x_n]$ W = V(I)

Define

$$trop(v(f)) = \frac{1}{2}w \in \mathbb{R}^{n}$$
 | the min of $trop(f)$
attained $twice$

I: an ideal in
$$K[x_1,...,x_n]$$

 $W = V(I)$
 $trop(W) = \bigcap_{f \in I} trop(v(f))$ (tropical variety)

(Maclagon-Sturnfels textbook Theorem 3.3.5) Tf V: Theducable of d-dimensional, then trop(v) is the support of of a balanced fan of pure dimension d that is connected three cotimension 1.

(Maclagon-Sturnfels textbook Theorem 3.3.5) Tf V: inveducible of d-dimensional, then trop(v) is the support of of a balanced fan of pure dimension d that is connected three colonersion 1.

(Maclagon-Sturnfels textbook Theorem 3.3.5) if V: investicable of d-dimensional, then trop(v) is the support of of a balanced fan of pure dimension d that is connected three colonneusian 1. (tropical variety has a polyhedral structure)

Tropical rank

Tropical rank

the tropical matrix A has tropical rank r if all its (r+1) x (r+1) tropical minors vanish

Tropical rank

the tropical matrix A has tropical rank r if all its (rfl) x (rfl) tropical minors vanish ex) $\begin{bmatrix} \chi_{11} & \chi_{12} & \chi_{13} \\ \chi_{21} & \chi_{22} & \chi_{23} \end{bmatrix}$

the tropical matrix A has tropical rank rif all its $(r+1) \times (r+1)$ tropical minors vanish ex) $\begin{bmatrix} \chi_{11} & \chi_{12} & \chi_{13} \\ \chi_{21} & \chi_{22} & \chi_{23} \end{bmatrix}$

3×3 minur

- X13 X22 X31 + X12 X23 X31 + X13 X21 X32 - X11 X23 X32 - X12 X21 X33 + X11 X22 X33

the tropical matrix A has tropical rank rif all its (r+1) × (r+1) tropical minors vanish ex) $\begin{bmatrix} \chi_{11} & \chi_{12} & \chi_{13} \\ \chi_{21} & \chi_{22} & \chi_{23} \end{bmatrix}$

tropical 3×3 minur

×13 O ×22 O ×31 O ×12 O ×23 O ×31 O ×13 O ×21 O ×32 O ×11 O ×23 O ×32 O ×12 O ×21 O ×33 O ×11 O × 22 O ×33

the tropical matrix A has tropical rank r if all its (r+1) × (r+1) tropical minors vanish e_{x}) $\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix}$ tropical 3×3 minor vanishes if $x_{13} \odot x_{22} \odot x_{31} \oplus x_{12} \odot x_{23} \odot x_{31} \oplus x_{10} \odot x_{20} \odot x_{31} \oplus x_{10} \odot x_{20} \odot x_{33} \oplus x_{10} \odot x_{20} \odot x_{33}$

attains the minimum twice

the tropical matrix A has tropical rank r if all its (rth) \times (rth) tropical minors vanish ex) $\begin{bmatrix} \chi_{11} & \chi_{12} & \chi_{13} \\ \chi_{21} & \chi_{22} & \chi_{23} \\ \chi_{31} & \chi_{32} & \chi_{33} \end{bmatrix}$ tropical 3×3 minor vanishs if $[\chi_{13} + \chi_{22} + \chi_{31}, \chi_{12} + \chi_{23} + \chi_{31}, \chi_{13} + \chi_{24} + \chi_{32}, \chi_{11} + \chi_{23} + \chi_{32}, \chi_{11} + \chi_{24} + \chi_{33}, \chi_{11} + \chi_{24} + \chi_{33} \end{bmatrix}$ attacks the minimum twice

He tropical matrix A has tropical rank r if all its (rfl) \times (rfl) tropical minors vanish ex) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

the tropical matrix A has tropical rank r if all its (r+1) × (r+1) tropical minors vanish ex) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ ×21 + ×32 + ×13

the tropical matrix A has tropical rank rif all its (r+1) x (r+1) tropical minors vanish ex) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

 $X_{21} + X_{32} + X_{13} = X_{12} + X_{23} + X_{31} = 0$

the tropical matrix A has tropical rank r if all its (r+1) x (r+1) tropical minors vanish ex) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $x_{21} + x_{32} + x_{13} = x_{12} + x_{23} + x_{31} = 0$ \Rightarrow tropical rank 2

 $X_{21} + X_{32} + X_{13} = X_{12} + X_{23} + X_{31} = 0$

 $x_{21} + x_{32} + x_{13} = x_{12} + x_{23} + x_{31} = 0$ = $x_{21} + x_{32} + x_{13}$

(Symmetric) Tropical rank Symmetric the tropical matrix A has tropical rank r if all its (r+1) × (r+1) tropical minors vanish (including symmetric) minors $e_{x}) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

$$\begin{array}{rl} x_{21} + x_{32} + x_{13} &= & x_{12} + x_{23} + & x_{31} = 0 \\ &= & x_{21} + & x_{32} + & x_{13} \\ \end{array}$$

$$\begin{array}{rl} \text{symmetric tropical rank 3} \\ (\text{even though it is tropical rank 2}) \end{array}$$

 $x_{13} + x_{22} + x_{31} = x_{12} + x_{21} + x_{33} = 0$

Q. How to represent tropical rank 2 matrices combinatorially?

Q. How to represent tropical rank 2 matrices combinatorially?

A Tropical Convexity

Tropical Convexity

$$F \subset \mathbb{R}^{n}$$
 is called tropically convex
if for any xiye F , $a,b \in$
 $a \odot x \oplus b \odot y \in F$

R

Tropical Convexity

V: a set in IRⁿ

Tropical Convexity V: a set in IRⁿ tconv(v): tropical convex hull (the smallest t. convex set) containing V Tropical Convexity V: a set in IRⁿ tconv(v): tropical convex hull (the somallest f. convex set) containing V Remark, If p is tropically convex, then StR1CS Hence we work on IR"/ R1

(Devetin, Santos, Sturmfels 2005)
M: an nxd tropical matrix
troprank (M)=
$$r \iff (dim t \operatorname{conv} of) = r-1$$

columns of M)

(Devetin, Santos, Sturmfels 2005)
M: an nxd tropical matrix
troprank (H)=
$$r \iff (\dim t \operatorname{conv} of) = r-1$$

columns of H)

ex) trop rank = 2 => (tconv) = tree

(Devetin, Santos, Sturmfels 2005)
M: an nxd tropical matrix
troprank (H)=
$$r \iff (\dim t \operatorname{conv} of) = r-1$$

columns of H)

ex) trop rank
$$= \lambda \implies (fconv) = tree$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(Devetin, Santos, Sturmfels 2005)
M: an nxd tropical matrix
troprank (H)=
$$r \iff (\dim t \operatorname{conv} of) = r-1$$

columns of M)

ex) trop rank
$$= \lambda \implies (fconv) = tree$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} -1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

(Devetin, Santos, Sturmfels 2005)
M: an nxd tropical matrix
troprank (H)=
$$r \iff (\dim t \operatorname{conv} of) = r-1$$

columns of H)

ex) trop rank =
$$a \Rightarrow (fconv) = tree$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \xrightarrow{X_2} X_1$$

(Devetin, Santos, Sturmfels 2005)
M: an nxd tropical matrix
troprank (M)=
$$r \iff (\dim t \operatorname{conv} of) = r-1$$

columns of M)

ex) trop rank =
$$\lambda \Rightarrow (fconv) = tree$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \xrightarrow{X_2} X_1$$

$$X_0(=-X_1 - X_2)$$

$$ex) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$ex) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(Markwig, Yu 2009) the space of tropical rank 2 matrices form a simplicial fan structure of bicolored trees

(Cati, L., Yu) the space of symmetric trop rank a form a simplicial fan structure of (Cati, L., Yu) the space of symmetric trop rank à form a simplicial fan structure of symmetric bicolored trees (symbic trees) (Cati, L., Yu) the space of symmetric trop rank a form a simplicial fan structure of symmetric bicolored trees (Symbic trees)

 $ex) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

(Cati, L., Yu) the space of symmetric trop rank a form a simplicial fan structure of symmetric bicolored trees (symbic trees) ex) TI 0 07

(Cari, L., Yu) the space of symmetric trop rank à form a simplicial fan structure of symmetric bicolared trees (symbic trees)

(Cati, L., Yu) the space of symmetric trop rank a form a simplicial fan structure of symmetric bicolored trees (symbic trees)

(Cati, L., Yu) the space of symmetric trop rank a form a simplicial fan structure of symmetric bicolored trees (symbic trees)

(Cati, L., Yu) the space of symmetric trop rank a form a simplicial fan structure of symmetric bicolored trees (symbic trees)

The space of 3x3 symmetric tropical rank 2 matrices

Can we peel the simplicial complex of symmetric tropical rank 2 matrices without breaking it?

(sheiling) A shelling of a pure-dimensional simplicial complex is a total ordering < on the facets so that t two facets C'<C there exists another facet C" such that i) C'AC SC"AC 2) C"<C 3) C\C" is a vertex of C

(Markwig, Yu 2009) the space of rank 2 matrices is shellable

(Markwig, Yu 2009) the space of rank 2 matrices is shellable

23 24 33 34 44

33 34 44 Statance parameter

the truear matroid of the distance parameter matrix defines the matroid of a symbic tree

bases of the matroid of symbic trees characterize bases of (regular) rank - 2 symmetric matrices

-	- 0	1	J	0		a	0	0	0	0 7
	-						0	Ň		1
	0		0							
	3		3	0		٥		2	_	
	2	((-	٥	D		0	0	0
	0	(0	0	2	N	N.		C	0
	0	0	ι.	ఎ	D	١	0	2	N.	0
	0	J	3	Ν	0	0	N	ಲ	N	2 1

bases of the matroid of symbic trees characterize bases of (regular) rank - 2 symmetric matrices (benstein 2017) bases for rank - 2 matrices

The matroid of Symbic trees (Cai, L., Yu)

The collection of bases in the algebraic matroid of rank-2 symmetric matrices is the union of bases of matroids of union of trees with caterpillor branches

The motroid of symbic trees (Cai, L., Yu)

The collection of bases in the algebraic matroid of rank-2 symmetric matrices is the union of bases of matroids of union of trees with caterpillor branches

91900000000

The matroid of symbic trees (Cat, L., Yu)

The collection of bases in the algebraic matroid of rank-2 symmetric matrices is the union of bases of matroids of union of trees with caterpillor branches

Caterpillar symbic tree

The matroid of Symbic trees (Cai, L., Yu)

The collection of bases in the algebraic matriced of rank-2 symmetric matrices is the union of bases of matroids of union of trees with caterpillor branches

