Rank 2 symmetric matrices, tropicalization
${ }_{1}{ }_{1}$ algebraic matroid joint work with
May cai \& Josephine Mu
Kisun Lee clemson University

Tropical algebra

Tropical algebra
tropical semiring

Tropical algebra tropical semiring $(\mathbb{R} \cup\{\cos , \oplus, \odot)$

Tropical algebra
tropical semiring $(\mathbb{R} \cup\{\infty\}, \oplus, 0)$
where $x \oplus y=\min \{x, y\}$

$$
x \odot y=x+y
$$

Tropical algebra
tropical semirring $(\mathbb{R} \cup\{\infty\}, \oplus, \odot)$
where $x \oplus y=\min \{x, y\}$

$$
x \odot y=x+y
$$

tropical matrix
: a matrix with entries in the tropical semiring

Linear algebra

Linear algebra
we say that a matrix has rank r if all its $(r+1) \times(r+1)$ minors vanish

Linear algebra
we say that a matrix has rank r if all its $(r+1) \times(r+1)$ minors vanish

MAIN INTEREST
study a tropical counterpart of rank

Linear algebra
we say that a matrix has rank r if all its $(r+1) \times(r+1)$ minors vanish

MAIN INTEREST
study a tropical counterpart of rank (tropical rank)

Tropicutization

Tropicatezation
K: a field with a valuation (e.g. \mathbb{C} or \mathbb{C} Cltil)

Tropicatezation
K: a field with a valuation (e.g. © or © Ciltel)
puisenx series

Tropicatization
K: a field with a valuation
(e.g. \mathbb{C} or \mathbb{C} Cite
puisenx series

$$
f(x)=\sum_{\alpha \in \mathbb{Z}^{n}} c_{\alpha} x^{\alpha}
$$

: a (Laurent)
polynomial

Tropicatization
K: a field with a valuation
(e.g. \mathbb{C} or \mathbb{C} Cittel)
puisenx series

$$
\begin{aligned}
& f(x)=\sum_{\alpha \in \mathbb{Z}^{n}} c_{\alpha} x^{\alpha} \Rightarrow \operatorname{trop}(f)(w)=\min _{\alpha \in \mathbb{Z}^{n}}\left\{\operatorname{val}\left(c_{\alpha}\right)+\sum_{i=1}^{n} \alpha_{i} \omega_{i}\right\} \\
& : a \text { (Laurent) }
\end{aligned}
$$

porynomial

Tropicatization
K: a field with a valuation
(e.g. \mathbb{C} or \mathbb{C} Cittel)
puisenx series

$$
\begin{aligned}
& f(x)=\sum_{\alpha \in \mathbb{Z}^{n}} c_{\alpha} x^{\alpha} \Rightarrow \operatorname{trop}(f)(w)=\min _{\alpha \in \mathbb{Z}^{n}}\left\{\operatorname{val}\left(c_{\alpha}\right)+\sum_{i=1}^{n} \alpha_{i} \omega_{i}\right\} \\
& : a \text { (Laurent) }
\end{aligned}
$$

porynomial

Tropicatization
K: a field with a valuation
(e.g. \mathbb{C} or \mathbb{C} Cittel)
puisenx series

$$
\begin{aligned}
& f(x)=\sum_{\alpha \in \mathbb{Z}^{n}} c_{\alpha} x^{\alpha} \Rightarrow \operatorname{trop}(f)(w)=\min _{\alpha \in \mathbb{Z}^{n}}\left\{\operatorname{val}\left(c_{\alpha}\right)+\sum_{i=1}^{n} \alpha_{i} \omega_{i}\right\} \\
& : a \text { (Laurent) }
\end{aligned}
$$

porynomial

Tropicutization
K: a field with a valuation
(e.g. \mathbb{C} or \mathbb{C} Cittel)
puisenx series

$$
f(x)=\sum_{\alpha \in \mathbb{Z}^{n}} c_{\alpha} x^{\alpha} \Rightarrow \operatorname{trop}(f)(\omega)=\min _{\alpha \in \mathbb{Z}^{n}}\left\{\operatorname{val}\left(c_{\alpha}\right)+\sum_{i=1}^{n} \alpha_{i} \omega_{i}\right\}
$$

: a (Laurent) : a tropicalization of f. polynomial

Tropical varieties

Tropical varieties

Define

$$
\text { trip }(v(f))
$$

Tropical varieties

Define

$$
\left.\begin{array}{ll}
\text { Define } \\
\operatorname{trop}(v(f))=\left\{w \in \mathbb{R}^{n} \mid\right. & \text { the min of trap }(f) \\
\text { attained twice }
\end{array}\right\}
$$

Tropical varieties

Define

$$
\operatorname{trop}(v(f))=\left\{w \in \mathbb{R}^{n} \left\lvert\, \begin{array}{ll}
\text { the min of trip }(f) \\
\text { attained twice }
\end{array}\right.\right\}
$$

(tropical hypersurface)

Tropical varieties

Define

$$
\begin{aligned}
& \text { Define } \\
& \operatorname{trop}(v(f))=\left\{w \in \mathbb{R}^{n} \left\lvert\, \begin{array}{l}
\text { the } \left.\begin{array}{l}
\text { min of } \\
\text { attained } \\
\text { twice }
\end{array}\right\}
\end{array}\right.\right\}
\end{aligned}
$$

ex) $f=x+y+1$

Tropical varieties

Define

$$
\begin{aligned}
& \text { Define } \\
& \operatorname{trop}(v(f))=\left\{w \in \mathbb{R}^{n} \left\lvert\, \begin{array}{l}
\text { the } \\
\text { attained of trice }
\end{array}\right.\right\}
\end{aligned}
$$

ex) $f=x+y+1 \Rightarrow \operatorname{trop}(f)=\min \{x, y, 0\}$

Tropical varieties

Define
$\operatorname{trop}(v(f))=\left\{w \in \mathbb{R}^{n} \left\lvert\, \begin{array}{l}\text { the min of trope }(f) \\ \text { attained twice }\end{array}\right.\right\}$
ex) $f=x+y+1 \Rightarrow \operatorname{trop}(f)=\min \{x, y, 0\}$

Tropical varieties

Define
$\operatorname{trop}(v(f))=\left\{w \in \mathbb{R}^{n} \mid\right.$ the min of trope $\left.(f)\right\}$
ex) $f=x+y+1 \Rightarrow \operatorname{trop}(f)=\min \{x, y, 0\}$

Tropical varieties

Define
$\operatorname{trop}(v(f))=\left\{w \in \mathbb{R}^{n} \mid\right.$ the min of trope $\left.(f)\right\}$
ex) $f=x+y+1 \Rightarrow \operatorname{trop}(f)=\min \{x, y, 0\}$

Tropical varieties

Define
$\operatorname{trop}(v(f))=\left\{w \in \mathbb{R}^{n} \mid\right.$ the min of trope $\left.(f)\right\}$
ex) $f=x+y+1 \Rightarrow \operatorname{trop}(f)=\min \{x, y, 0\}$

Tropical varieties

Define

$$
\left.\begin{array}{ll}
\text { Define } \\
\operatorname{trop}(v(f))=\left\{w \in \mathbb{R}^{n} \mid\right. & \text { the min of trap }(f) \\
\text { attained twice }
\end{array}\right\}
$$

I: an ideal in $K\left[x_{1}, \ldots, x_{n}\right]$

$$
V=V(I)
$$

Tropical varieties

Define

$$
\begin{aligned}
& \text { Define } \\
& \operatorname{trop}(v(f))=\left\{w \in \mathbb{R}^{n} \left\lvert\, \begin{array}{l}
\text { the } \\
\text { ait tain of } \\
\text { arid trice }(f)
\end{array}\right.\right\}
\end{aligned}
$$

I: an ideal in $K\left[x_{1}, \ldots, x_{n}\right]$

$$
V=V(I)
$$

$\operatorname{trop}(V)=\bigcap_{f \in I} \operatorname{trop}(v(f)) \quad$ (tropical variety)

Tropical varieties
(Maclagom-Sturutels textbook Theorem 3.3.5) if V : irreduable of d-dimensional, then trope (v) is the support of of a balanced fan of pure dimension d that is connected three codimeusion 1.

Tropical varieties
(Maclagam-Sturutels textbook Theorem 3.3.5) if V : irreducible of d-dimensional, then trope (v) is the support of of a balanced fan of pure dimension d that is connected three codimeusion 1.

Tropical varieties
(Maclagam-Sturatels textbook Theorem 3.3.5) if V : irreducible of d-dimensional, then trope (v) is the support of of a balanced fan of pure dimension d that is connected thru codimeusion 1. (tropical variety has a polyhedral structure)

Tropical rank

Tropical rank
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish

Tropical rank
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish
ex) $\left[\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33}\end{array}\right]$

Tropical rank
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish
ex) $\left[\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33}\end{array}\right]$
3×3 minor

$$
-x_{13} x_{22} x_{31}+x_{12} x_{23} x_{31}+x_{13} x_{21} x_{32}-x_{11} x_{23} x_{32}-x_{12} x_{21} x_{33}+x_{11} x_{22} x_{33}
$$

Tropical rank
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish
ex) $\left[\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33}\end{array}\right]$
tropical 3×3 miner
$x_{13} \odot x_{22} \odot x_{31} \odot x_{12} \odot x_{23} \odot x_{31} \oplus x_{13} \odot x_{21} \odot x_{32} \oplus x_{11} \odot x_{23} \odot x_{32} \oplus x_{12} \odot x_{21} \odot x_{33} \oplus x_{11} \odot x_{22} \odot x_{33}$

Tropical rank
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish
ex) $\left[\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33}\end{array}\right]$
tropical 3×3 miner vanishes if $x_{13} \odot x_{22} \odot x_{31} \oplus x_{12} \odot x_{23} \odot x_{31} \oplus x_{13} \odot x_{21} \odot x_{32} \oplus x_{11} \odot x_{23} \odot x_{32} \oplus x_{12} \odot x_{21} \odot x_{33} \oplus x_{11} \odot x_{22} \odot x_{33}$ attains the minimum twice

Tropical rank
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish
ex) $\left[\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33}\end{array}\right]$
tropical 3×3 miner vansisks if

$$
\left\{x_{13}+x_{22}+x_{11}, x_{12}+x_{31}+x_{31}, x_{13}+x_{21}+x_{32}, x_{11}+x_{22}+x_{22}, x_{12}+x_{21}+x_{313}, x_{11}+x_{22}+x_{13}\right\}
$$

attains the minimum twice

Tropical rank
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Tropical rank
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish

$$
\begin{aligned}
& \text { ex) }\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& x_{21}+x_{32}+x_{13}
\end{aligned}
$$

Tropical rank
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish

$$
\begin{aligned}
& \text { ex) }\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& x_{21}+x_{32}+x_{13}=x_{12}+x_{23}+x_{31}=0
\end{aligned}
$$

Tropical rank
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
x_{21}+x_{32}+x_{13}=x_{12}+x_{23}+x_{31}=0
$$

\Rightarrow tropical rank 2
(Symmetric)
Tropical rank
Symmetric
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish
(symmetric)
Tropical rank
symmetric
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish (including symmetric)
(Symmetric)
Tropical rank
symmetric
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish (including symmetric)
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
x_{21}+x_{32}+x_{13}=x_{12}+x_{23}+x_{31}=0
$$

(symmetric)
Tropical rank
symmetric
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish (including symmetric)
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
x_{21}+x_{32}+x_{13} & =x_{12}+x_{23}+x_{31}=0 \\
& =x_{21}+x_{32}+x_{13}
\end{aligned}
$$

(Symmetric)
Tropical rank
Symmetric
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish (including symmetric)
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
x_{21}+x_{32}+x_{13} & =x_{12}+x_{23}+x_{31}=0 \\
& =x_{21}+x_{32}+x_{13}
\end{aligned}
$$

symmetric tropical rank 3 (even though it is topical rank 2)
(symmetric) Tropical rank
symmetric
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ (including symmetric)
(symmetric)
Tropical rank
symmetric
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$

$$
x_{13}+x_{22}+x_{31}
$$ (including symmetric)

(Symmetric)
Tropical rank
symmetric
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish (including symmetric)
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$

$$
x_{13}+x_{22}+x_{31}=x_{12}+x_{21}+x_{33}=0
$$

(Symmetric)
Tropical rank
symmetric
the tropical matrix A has tropical rank r if all its $(r+1) \times(r+1)$ tropical minors vanish (including symmetric)

$$
\begin{aligned}
& \text { ex) }\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \\
& x_{13}+x_{22}+x_{31}=x_{12}+x_{21}+x_{33}=0
\end{aligned}
$$

symmetric tropical rank 2
Q. How to represent tropical rank 2 matrices combinatorially?
Q. How to represent tropical rank 2 matrices combinatorially?
A. Tropical convexity

Tropical Convexity
$\sum \subset \mathbb{R}^{n}$ is called tropically convex if for any $x, y \in S, a, b \in \mathbb{R}$

$$
a \odot x \oplus b \odot y \in S
$$

Tropical convexity
V : a Set in \mathbb{R}^{n}

Tropical Convexity

V: a set in \mathbb{R}^{n}
tconv (v) : tropical convex hull $\binom{$ the smallest }{ containing $V}$

Tropical Convexity
V : a set in \mathbb{R}^{n}
tconv(v): tropical convex hull

$$
\binom{\text { the smallest t.convex set }}{\text { containing } V}
$$

Remark If F is tropically convex, then $S+\mathbb{R} \mathbb{C} \subset$
Hence we work on $\mathbb{R}^{n} / \mathbb{R} \mathbb{1}$
(Develin, santos, sturmfels 2005) M : an $n \times d$ tropical matrix troprank $(M)=r \Longleftrightarrow\left(\begin{array}{c}\operatorname{dim} \text { tconV } \\ \text { columns of } \\ \text { col }\end{array}\right)=r-1$
(Develin, santos, Sturmfels 2005) M: an $n \times d$ tropical matrix troprank $(M)=r \Longleftrightarrow\left(\begin{array}{c}\operatorname{dim} \text { ton } \\ \text { columns of } \\ \text { col }\end{array}\right)=r-1$
ex) two rank $=2 \Rightarrow($ tconv $)=$ tree
(Develin, santos, Sturmfels 2005) M: an $n \times d$ tropical matrix troprank $(M)=r \Longleftrightarrow\left(\begin{array}{c}\operatorname{dim} \text { ton } \\ \text { columns of } \\ \text { col }\end{array}\right)=r-1$
ex) two rank $=2 \Rightarrow($ tconv $)=$ tree

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(Develin, santos, Sturmfels 2005) M: an $n \times d$ tropical matrix troprank $(M)=r \Longleftrightarrow\left(\begin{array}{c}\operatorname{dim} \text { tconV } \\ \text { columns of } \\ \text { col }\end{array}\right)=r-1$
ex) twop rank $=2 \Rightarrow($ tconv $)=$ tree

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

(Develin, santos, sturmfels 2005) M: an $n \times d$ tropical matrix troprank $(M)=r \Longleftrightarrow\left(\begin{array}{c}\operatorname{dim} \text { tconV } \\ \text { columns of } \\ \text { col }\end{array}\right)=r-1$
ex) twop rank $=2 \Rightarrow$ (tconv) $=$ tree

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

(Develin, santos, sturmfels 2005) M : an $n \times d$ tropical matrix troprank $(M)=r \Longleftrightarrow\left(\begin{array}{cc}\operatorname{dim} \operatorname{toonv} & \text { of } \\ \text { columns } & \text { of } M\end{array}\right)=r-1$
ex) twop rank $=2 \Rightarrow($ tconv $)=$ tree

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] \xrightarrow{\mid} x_{0}\left(=-x_{1}-x_{2}\right) \quad x_{1}
$$

(Markwig, Mu 2009)
the space of tropical rank 2 matrices form a simplicial fan structure of bicolored trees
(Markwig, Mu 2009)
the space of tropical rank 2 matrices form a simplicial fan structure of bicolored trees
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(Markwig, Mu 2009)
the space of tropical rank 2 matrices form a simplicial fan structure of bicolored trees
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(Markwig, Mu 2009)
the space of tropical rank 2 matrices form a simplicial fan structure of bicolored trees
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(Markwig, Mu 2009)
the space of tropical rank 2 matrices form a simplicial fan structure of bicolored trees
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

(Markwig, Mu 2009)
the space of tropical rank 2 matrices form a simplicial fan structure of bicolored trees
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

(Markwig, Mu 2009)
the space of tropical rank 2 matrices form a simplicial fan structure of bicolored trees
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

(Markwig, Mu 2009)
the space of tropical rank 2 matrices form a simplicial fan structure of bicolored trees
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

(Cai, L., Mu)
the space of symmetric trip rank 2 form a simplicial fan structure of
(Cai, L., Mu)
the space of symmetric trip rank 2 form a simplicial fan structure of symmetric bicolored trees (symbic trees)
(Cai, L., Mu)
the space of symmetric trop rank 2 form a simplicial fan structure of symmetric bicolored trees (symbic trees)
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
(Cai, L., Mu)
the space of symmetric trip rank 2 form a simplicial fan structure of symmetric bicolored trees (symbic trees)
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$

(Cai, L., Mu)
the space of symmetric trip rank 2 form a simplicial fan structure of symmetric bicolored trees (symbic trees)
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$

(Cai, L., Mu)
the space of symmetric trip rank 2 form a simplicial fan structure of symmetric bicolored trees (symbic trees)
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$

(Cai, L., Mu)
the space of symmetric trip rank 2 form a simplicial fan structure of symmetric bicolored trees (symbic trees)
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$

(Cai, L., Mu)
the space of symmetric trip rank 2 form a simplicial fan structure of symmetric bicolored trees (symbic trees)
ex)

(Cai, L., Mu)
the space of symmetric trip rank 2 form a simplicial fan structure of symmetric bicolored trees (symbic trees)
ex)

(Cai, L., Mu)
the space of symmetric trip rank 2 form a simplicial fan structure of symmetric bicolored trees (symbic trees)
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$

(Cai, L., Mu)
the space of symmetric trip rank 2 form a simplicial fan structure of symmetric bicolored trees (symbic trees)
ex) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
$+$

$$
\left[\begin{array}{lll}
2 d & d+e & d+f \\
d+e & 2 e & e+f \\
d+f & e+f & 2 f
\end{array}\right]
$$

(translating the point 0)

The space of 3×3 symmetric tropical rank 2 matrices

Shellability

Shellability

Shellability

Can we peel the simplicial complex of symmetric tropical rank 2 matrices without breaking it?

Shellability
(shelling)
A swelling of a pure-dimousional simplicial complex is a total ordering $<$ on the facets so that \forall two facets $C^{\prime}<C$ there exists another facet $C^{\prime \prime}$ such that

1) $C^{\prime} \cap C \subseteq C^{\prime \prime} \cap C$
2) C C $<C$
3) $C \backslash C^{\prime \prime}$ is a vertex of C

Shellability
(Markwig, Yu 2009)
the space of rank 2 matrices is suerlable

Shellability
(Markwig, Yu 2009)
the space of rank 2 matrices is suerlable
(Cai, L., Yu)
the space of symmetric trop rank 2 is shellabie

Shellability

The matroid of symbic trees

The matroid of symbic trees

The matroid of symbic trees

$$
\begin{aligned}
& \begin{array}{c}
a \\
b \\
b \\
0 \\
0
\end{array} 0 \\
& \begin{array}{llllllllll}
11 & 12 & 13 & 14 & 22 & 23 & 24 & 33 & 34 & 44
\end{array} \\
& \begin{array}{l}
\boldsymbol{a} \\
\boldsymbol{b} \\
c \\
d \\
e \\
f \\
g
\end{array}\left[\begin{array}{llllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 2 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 2
\end{array}\right]
\end{aligned}
$$

The matroid of symbic trees

$$
\begin{aligned}
& a a_{b}^{a}\left[\begin{array}{llll}
0 & a & 0 & 0 \\
a & 0 & 0 & 0 \\
0 & 0 & b & b \\
0 & 0 & b & b+c
\end{array}\right]+\left[\begin{array}{llll}
2 d & d+e & d+f & d+g \\
d+e & 2 e & e+f & e+g \\
d+f & e+f & 2 f & f+g \\
d+g & e+g & f+g & 2 g
\end{array}\right] \\
& \begin{array}{lllllllll}
11 & 12 & 13 & 14 & 22 & 23 & 24 & 33 & 34 \\
44
\end{array} \\
& \begin{array}{l}
\boldsymbol{a} \\
\mathbf{b} \\
\mathbf{c} \\
d \\
e \\
\boldsymbol{e} \\
\boldsymbol{g}
\end{array}\left[\begin{array}{llllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 2 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 2
\end{array}\right]
\end{aligned}
$$

distance parameter matrix

The matroid of symbic trees

$$
\left[\begin{array}{llllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 2 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 2
\end{array}\right]
$$

the linear matroid of the distance parameter matrix defines the matroid of a symbic tree

The matroid of symbic trees

$$
\left[\begin{array}{llllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 2 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 2
\end{array}\right]
$$

bases of the matroid of symbic trees characterize bases of (regular) rank-2 symmetric matrices

The matroid of symbic trees

$$
\left[\begin{array}{llllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 2 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 2
\end{array}\right]
$$

bases of the matroid of symbic trees characterize bases of (regular) rank-2 symmetric matrices (Demstern 2017) bases for rank-2 matrices

The matroid of symbic trees (Cai, L., Tu)

The collection of bases in the algebraic matroid of rank-2 symmetric matrices
is the union of bases of matroids of union of trees with caterpillar branches

The matroid of symbic trees (Cai, L., Tu)

The collection of bases in the algebraic matroid of rank-2 symmetric matrices
is the union of bases of matroids of union of trees with caterpillar branches

BVOOOOOOOOOD

The matroid of symbic trees
(Cai, L., Mu)
The collection of bases in the algebraic matroid of rank-2 symmetric matrices
is the union of bases of matroids of union of trees with caterpillar branches

The matroid of symbic trees (Cai, L., Mu)

The collection of bases in the algebraic matroid of rank-2 symmetric matrices
is the union of bases of matroids of union of trees with caterpillar branches

Thank you for your attention

